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We experimentally study the response of star-shaped clusters of initially unentangled N ¼ 4, 10, and 37
nuclear spin-1=2 moments to an inexact π-pulse sequence and show that an Ising coupling between the
center and the satellite spins results in robust period-2 magnetization oscillations. The period is stable
against bath effects, but the amplitude decays with a timescale that depends on the inexactness of the pulse.
Simulations reveal a semiclassical picture in which the rigidity of the period is due to a randomizing effect
of the Larmor precession under the magnetization of surrounding spins. The timescales with stable
periodicity increase with net initial magnetization, even in the presence of perturbations, indicating a robust
temporal ordered phase for large systems with finite magnetization per spin.
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Spontaneous symmetry-breaking is a central notion in
many body physics, allowing us to explain several natural
phenomena, such as formation of a magnet or ice crystals.
While there are many systems in which the underlying
spatial symmetries are broken, resulting in various crys-
talline phases, and a few classical systems that exhibit
spontaneous temporal oscillations, it was only recently that
the possibility of spontaneous breaking of time translation
symmetry in quantum systems was considered. The initial
proposals [1] for realizing a spontaneous breaking of
continuous time translation symmetry were later shown
to be forbidden in static equilibrium systems [2,3].
However, in the attempt to understand quantum thermo-
dynamics of driven systems, it was realized that an
externally driven, disordered, interacting spin system can
stabilize a phase that spontaneously breaks the discrete time
translation (Z) symmetry of the system to a subgroup nZ
[4–7]. The phenomenon was soon experimentally realized
in trapped cold-atom systems that mimic a long-range
interacting disordered spin-half chain [8] and in dense
collections of randomly interacting nitrogen vacancy cen-
ters embedded in diamond [9,10]. While this Letter was
under review, similar observations were also realized in
other solid NMR experiments [11].
In this Letter, we report on the observation of robust

period-2 oscillations of magnetization in a cluster of
nuclear spins in a simple star-shaped geometry, with a
central spin interacting with N surrounding satellite spins
via Ising interactions mediated by the electron cloud in the
molecule. The satellite spins do not interact with each other.
Spins in each molecule show magnetization oscillations
of period 2, as expected, when subjected to a sequence of
transverse π pulses (pulses that rotate every up or down spin
by π rad). However, the Ising interactions within the cluster
result in the period rigidly locking onto two, even under a
sequence of inexact π pulses (pulses that rotate by an

amount π − e). Simulations of an isolated cluster show that
the period is robust even in the presence of small pertur-
bations and disorder that break the symmetries of the
model. For the present Letter, we perform nuclear magnetic
resonance (NMR) experiments on acetonitrile, trimethyl
phosphite (TMP), and tetrakis(trimethylsilyl) silane (TTSS)
containing 4,10, and 37 spins [Figs. 1(a)–1(c)] [12]. The
experiments are performed on ensembles of ∼1015 mole-
cules with a distribution of initial states, described by a
direct product density matrix. High precision ensemble
average magnetization measurements of central or satellite
spins can be performed using free-induction decay signals.
Period-2 oscillation of individual spins results in corre-
sponding oscillations of the ensemble average magnetiza-
tion. Control experiments performed on molecules that
contain a spinless isotope at the center show oscillations
with frequencies that linearly vary with the deviation e,
showing that the robustness of the period originates from
interaction with the central spin. In the following, unless
units are made explicit, frequencies are in units where the
time period T ¼ 1.
Model and numerical results.—The unitary operator

evolving the state of the cluster between successive steps
is given by

UðJ; θ; tÞ ¼ exp

�
−
{Jt
ℏ

Sz0
XN−1

i¼1

Szi

�
for t ∈ ½0; TÞ;

UðJ; θ;TÞ ¼ exp

�
−{θ

XN−1
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Sxi

�
exp

�
−
{JT
ℏ
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�
;
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where J, T, and θ are the Ising interaction strength, time
period, and the rotation angle characterizing the pulse. Sμi
are spin operators. Site index i ¼ 0 labels the central spin
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(see [13] and Supplemental Material [14] for a description
of liquid-state NMR, which realizes the unitary).
Wewill label the deviation from π pulse by e ¼ π − θ. To

simplify the discussion below, it is useful to temporarily
switch to a toggling frame of reference in which the basis of
every spin rotates by an angle π about the x axis after each
pulse. Because of the Z2 symmetry of the model, the
unitary operator in the rotating basis retains the same form
as in Eq. (1), but with a reduced pulse angle e ¼ π − θ; i.e.,
the spins in the rotating basis see a unitary operator
UðJ;−e; tÞ. A constant z magnetization of all spins in
the rotating basis picture corresponds to a period-2 oscil-
lation of all physical spins. Numerical simulations indeed
show that a finite magnetization is maintained under a
sequence of weak pulses (pulse angle −e). Presented below
is a semiclassical picture inferred from numerical simu-
lations (Fig. 2).
For simplicity, we will consider the time evolution

starting from a fully polarized initial state under a sequence
of small pulses θ ¼ −e (corresponding to θ ¼ π − e
experienced by the physical spins). During 0 < t < T,
the spins do not evolve, as the state is an eigenstate of
the unitary evolution [Eq. (1)]. At time t ¼ T, the pulse
rotates every spin by an angle e away from the z axis,
as shown on the Bloch sphere (see Fig. 2). During
T < t < 2T, the central spin, which is tilted away from
the z axis, evolves under the Hamiltonian H ≈ −JhMsiSz0,

where Ms is the net z magnetization of the satellite spins,
resulting in a Larmor-like precession as shown in Fig. 2(d).
The orientation of the central spin at t ¼ 2T− depends on
the amount of precession [ðJThMsiÞ=ℏ]. The e pulse at
t ¼ 2T now brings the spin vector to a polar angle
0 < θ < 2e. Owing to the precession, the successive e
pulses can now cancel each other. In contrast, in a set of
noninteracting spins, the angles always add constructively
leading to a steady increase in the polar angle [ne after n
pulses; see Fig. 2(f)]. Thus, the randomizing effect of the
interaction-induced Larmor precession, causes the polari-
zation of the central spin to survive longer than that of an
isolated spin. We expect the same effect to be seen also on
the surrounding spins, except that they precess under the
magnetization of the central spin alone, resulting in a
slower precession of the satellite spins compared to the
central spin [Fig. 2(f)]. The constant sign of the Bloch-
vector component hSzi in the rotating basis implies a
period-2 oscillation of the physical spin orientation
[Figs. 2(a) and 2(b)].
Such a semiclassical picture assumes that the central spin

is not maximally entangled with the surrounding spins, as
otherwise the Bloch vector may vanish in length even when
the polar angle is conserved. As shown in Fig. 2(c), the von
Neumann entropy of the central spin stays below maxi-
mum, ensuring finite Bloch vectors. Simulations of the
small systems at much longer timescales using exact
diagonalization indicate that entanglement of the system
does not rise for timescales that increase exponentially with
system size [Figs. 3(c) and 3(d)].
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FIG. 2. Numerical simulations of spins in the rotating basis.
(a),(b) Time dependence of the expectation values of the three spin
components of a satellite (b) and central (a) spin for a system with
N ¼ 8 spins, ½ðJTÞ=ℏ� ¼ 4, and pulse angle θ ¼ e ¼ 0.4. Initial
state is the fully z polarized state. (c) Entanglement entropy of the
central spin. (d) Bloch sphere representing the spin components of
a central spin (of a six spin cluster) at times t ¼ 0, Tþ, 2T−, and
2Tþ; þ (−) labels the time just after (before) the pulse. Sequence
of intermediate dots track the evolution between time t ¼ T and
2T. (e) Same as (d) but for a satellite spin. (f) Bloch vectors for a
single isolated spin at successive time steps.
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FIG. 1. Molecules used in the experiments: (a) acetonitrile,
(b) trimethyl phosphite, and (c) tetrakis(trimethylsilyl)silane,
with the 4, 10, and 37 NMR active nuclei encircled. (d) Exper-
imentally measured magnetization hSzi i of satellite spins of
TMP for the pulse sequence in Eq. (1) with JT=ℏ ¼ 6.5 and
θ ¼ π − 0.1. Red (green) dots show the magnetization at odd
(even) time steps. For visibility in the plot, the y axis has been
rescaled at every 100th time step. (e) Blue line shows exper-
imentally measured magnetization oscillations of free or non-
interacting spins of protons in acetonitrile that contain a spinless
C-12 central spin, at a pulse angle θ ¼ π − 0.27. Gray lines
indicate the expected response in the absence of a bath.
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In the following, we will use the physical spin basis.
To explore the stability of the period to perturbations other
than e, we numerically simulated a pure spin system with
a time-independent perturbation to the Hamiltonian of the
form

P
ih

x
i S

x
i þ hziS

z
i . The quenched disorder hxi and hzi

were picked uniformly from [−δ=2, δ=2] and ½0; δ� (in
units where T=ℏ ¼ 1). To compare the response of differ-
ent system sizes, we fix the average magnetization per
spin. We found that, in all cases, the timescale in which
there was a dominant period-2 oscillation appeared to
grow exponentially with system size [Fig. 3(b)]. Similar
increases in timescales were also observed in simulations
with disorder-free perturbations of the form hz

P
Szi and

Jx
P

Sxi S
x
iþ1 [14]. The timescales with a stable period are

higher when the initial state of the spin cluster had a
larger total magnetization. Slow heating and stability in
this disorder-free system is likely to be associated with
a prethermal regime similar to that in Refs. [15,16].
However, unlike the high frequency case discussed there,
the experiments here are performed at low frequencies
(JT > 1). Cross correlation between the central and
satellite spins [Figs. 3(a) and 3(b)] shows that different

spins oscillate in synchrony, suggesting that the robust-
ness of the period is a collective behavior of all spins.
For small e and the Z2 symmetric unitary [Eq. (1)],

origin of the period-2 oscillations at finite deviation e can
be understood in a manner similar to that described in
Ref. [5]. The Floquet unitary describing the periodic drive
commutes with the parity operator P ¼ Q

2Sxi and there-
fore the quasienergy eigenstates have a parity quantum
number �1. The quasienergy states of the system at θ ¼ 0
occur in degenerate quasienergy pairs of opposite parity
ψ� ¼ jσ0; mi � j − σ0;−mi, where jσ0; mi is a state with
central and satellite spins in an eigenstate of Sz0 andP

N−1
i¼1 Szi with eigenvalues σ0 and m. At small finite pulse

angle θ ¼ e, the quasienergy degeneracy is broken in a
manner that depends on the magnetization jmj as ∼e2jmjþ1.
In the presence of a sequence of inexact π pulses θ ¼ π − e,
the unitary isUðJ; π − e;TÞ ¼ PUðJ;−e;TÞ, for which the
states ψ� have quasienergies separated by π þOðe2jmjþ1Þ.
A polarized direct product initial state jσ0; mi is a sym-
metric or antisymmetric linear combination of the states
ψ�. As a result, the unitary for inexact π pulses acts on such
a polarized state to flip the orientation of all the spins at
each time step

Ujσ0; mi ¼ Uðψþ � ψ−Þ ∼ ψþ � e−{πψ− ¼ j − σ0;−mi;
ð2Þ

resulting in a period-2 magnetization oscillation. Better
degeneracies of the higher magnetization initial states
explain why initial states with larger magnetization show
stable periodicity for longer timescales. Subleading oscil-
lations of other frequencies originate from mixing of ψ�
with states of smaller magnetizations.
NMRsetup.—The spin systemsused for the experiments—

acetonitrile, TMP, and TTSS—are prepared in the solvents
dimethyl sulfoxide or deuterated chloroform. The experi-
ments are carried out at 300 K in a Bruker 400 MHz NMR
spectrometer equipped with an UltraShield superconducting
magnet of strength 9.39 T. The unitary of Eq. (1) is realized in
a doubly rotating frame [13,14]. The θ pulses are realized by
simultaneous resonant, short duration radio frequency pulses
on all spins. The pulse duration can be tuned to control θ.
Interaction parameter JT=ℏ can be set by tuning the time
period T. After n pulses, any residual transverse magnetiza-
tion is destroyed using a pulsed field gradient, and the final
magnetization hSzi is rotated into the transverse directionwith
the help of a π=2 detection pulse. The NMR signal is then
detected as the oscillatory emf induced in a probe coil due to
the precessing transverse magnetization about the Zeeman
field [14,17]. During each period, the measurement was
performed immediately after the pulse.
Initial states in the experimental ensemble of ∼1015

molecules can be described by mixed state of the form
ρ ¼ Q

N−1
i¼0 ⊗ ρi, where ρi ¼ 1

2
ðIþ ϵσzi Þ, and the purity

FIG. 3. (a),(b) Time dependence of cross correlation [multiplied
by ð−1Þt] between the central spin Sz0 and a satellite spin Szi from
simulations of systems of different sizes [JT=ℏ ¼ 4, e ¼ 0.05,
ψ ¼ Rxðπ=8Þj↑↑…i, Rxðπ=8Þ being the rotation of all spins by
π=8 about x]. Disorder strengths are 0 (a),(c) and 0.5 (b),(d).
(c),(d) Entanglement entropy of the central spin. Disorder
averaging has been performed in (b),(d).

PHYSICAL REVIEW LETTERS 120, 180602 (2018)

180602-3



ϵ ≈ 10−5, σz being the Pauli matrix. The purity is inferred
from the thermal equilibrium distribution at the magnetic
field strength inside the spectrometer. Note that, while the
ensemble average magnetization is small, the ensemble
contains subensembles of all possible initial magnetizations
−N=2 ≤ M ≤ N=2, with a marginally higher fraction
(parameterized by ϵ) with a positive sign. Clusters with
finite magnetization jMj show stable period-2 oscillations,
which collectively reflect in the ensemble average
measurements.
Results and discussion.—Figure 4 shows the measured

satellite spin magnetizations in TMP and acetonitrile for an
interaction parameter ðJTÞ=ℏ¼20.7 (J=h¼11Hz,T¼0.3s).
Magnetization oscillations on TMP [Figs. 4(a)–4(c)] show
a clear peak at frequency half (subharmonic peak),
whose height decreases with increase in the deviation e,
vanishing at e ≈ 0.4π in agreement with the simulations.
There are no discernible peaks in the spectrum at frequen-
cies [ðπ � eÞ=2π] expected from noninteracting spins.
Fourier transforms were taken using standard FFT algo-
rithms applied to the data from the chosen time window.
For comparability, magnetization data were normalized
such that initial magnetization was one.

The rf pulses have �5% distribution of θ values around
the nominal value, due to the spatial inhomogeneity of
the rf field over the volume of the sample. The experimental
system suffers from decoherence due to coupling to an
external thermal bath. This could explain the decay of
the oscillation amplitudes with time [18]. Apart from this
decay, the magnitude of the subharmonic peaks in each
time window match the simulations. Interestingly, the
decay time decreases steadily with e [Fig. 4(c)].
The acetonitrile sample contains a mixture with 99% of

the molecules carrying a spinless C-12 and 1% of the
molecules containing a spinful C-13 atom in the methyl
group. Although the NMR signal has contributions from
the satellite spins of both isomers, their contributions can be
separated in the frequency domain of the induced emf
oscillations during the final measurement process, thanks to
the presence or absence of interaction with the central spin,
and thus they can be analyzed separately. Experiments on
acetonitrile were performed at the parameter ðJTÞ=ℏ ≈
17.1 (J=h ¼ 136 Hz, T ¼ 0.02 s). Figure 4(e) shows the
Fourier transforms of magnetization of the satellite spins
in acetonitrile that contain a spinfull C-13 central atom.
Figure 4(f) shows the Fourier transform of the magnetiza-
tion of the satellite spins in molecules containing a spinless
C-12 central atom. In the absence of a central spin with
which the satellites can interact, they oscillate like isolated
spins with a frequency that varies linearly with e. The
absence of a stable period in this noninteracting system
clearly shows that the stability of the period observed in
other clusters arises from interactions. Figure 5 shows the
results for magnetization measurements of the central Si-29
spin of the TTSS molecule, which has N ¼ 36 satellite
spins around the central atom. Experiments were performed
at JT=ℏ ≈ 4 (J=h ¼ 2.5 Hz, T ¼ 0.25 s).
We have experimentally demonstrated that stable tem-

poral order can be realized in NMR spin clusters. Absence
(d) (e)

(a) (b)

(f)

(c)

Acetonitrile

TMP

FIG. 4. Experimentally measured satellite spin magnetizationP
N−1
i¼1 hSzi i. (a),(d) Magnitude of the subharmonic peak upon

varying e in TMP and acetonitrile. Solid continuous lines show
results from simulations. Different markers indicate Fourier
transforms of experimental measurements in different time
windows. (b) Waterfall plot of the Fourier spectrum (time window
0 < t < 80T) of the experimentally observed magnetization of
TMP at different deviations e. Dashed blue lines indicate the
location of peaks expected for a free spin. (c) Variation of the
decay time of the experimentally observed magnetization am-
plitude with e for TMP. (e),(f) Same as (b) but for acetonitrile
with a spinful C-13 (e) and spinless C-12 (f) atom at the center.

(b) (c)(a)

FIG. 5. Experimental values of central spin magnetization hSz0i
in TTSS. (a) Subharmonic peak strength as a function of the
deviation e. Different markers indicate Fourier transforms in
different time windows. (b) Waterfall plot of the Fourier spectrum
of the experimentally observed central spin magnetization at
different e. Blue dashed line shows the location of the Fourier
peaks expected for free spins. (c) Decay timescale as a function of
e. (Inset) A semilog plot of the amplitude of magnetization as a
function of time.
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of a stable period in the control experiment in C-12
acetonitrile shows that stability of the period requires
interactions between the spins (as in C-13 acetonitrile).
Though bath effects and other perturbations in the experi-
ment lead to a magnetization decay with time, interestingly,
the period appears to be unaffected. Stability of the period
in the spin cluster improves with increase in total initial
magnetization. Therefore, large systems with finite initial
magnetization per spin should show a stable temporal
ordered phase. The stability of the oscillations in such
systems can be interpreted as an error correction on the
pulse sequence and may find potential applications towards
robust quantum information processing [19].
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