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By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point
analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex
systems. A strategy of systematically identifying and locating independent and dependent phase transitions
of any order is proposed. The power of the generalized method is demonstrated in applications to the
ferromagnetic Ising model and a coarse-grained model for polymer adsorption onto a substrate. The results
shed new light on the intrinsic phase structure of systems with cooperative behavior.
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Conventionally, the identification of phase transitions is
based on locating nonanalyticities, discontinuities, or diver-
gences in thermodynamic variables (e.g., entropy, pressure,
magnetization) and response functions (specific heat, com-
pressibility, susceptibility, etc.), respectively. These quan-
tities can be represented by distinct derivatives of appropriate
thermodynamic potentials. According to Ehrenfest’s classi-
fication scheme [1], the order of the transition is determined
by the lowest derivativewhich exhibits catastrophic behavior
at the transition temperature. However, this can only occur
in the thermodynamic limit. Thermodynamic quantities
describing the macrostate of finite systems do not show
any such obvious transition behavior. Therefore, the rapidly
growing interest in understanding thermodynamic activity
in finite systems, such as nanoscale systems relevant for
biology and modern nanotechnology, necessitates a general-
ized identification and classification scheme for phase tran-
sitions. Microcanonical statistical analysis [2–7] has turned
out to be a useful basis for first systematic schemes [8,9].
In this context, it has been common to analyze first-order-

like transitions in finite systems by means of Maxwell’s
construction, where the backbending region in the transition
regime of the energetic temperature curve is replaced by a
flat segment. However, Maxwell’s construction only applies
to single transitions of first order and can neither be used
if the transition is composed or accompanied by subphase
transitions [10], nor if it is of higher order. However, by
replacing the “flatness” idea of Maxwell’s construction by
the more general principle of minimal sensitivity [11], these
issues can be resolved as will be discussed in the following.
The principle of minimal sensitivity (PMS) was pro-

posed to solve the ambiguity of results obtained by
applying different renormalization schemes (RSs) in con-
ventional perturbation theory [11,12]. It asserts that if a
truncated perturbation expansion in some RSs depends on

unphysical parameters, of which the exact result must be
independent, the parameter values should be chosen so as
to minimize the sensitivity of the approximant to small
variations in those parameters. The PMS has found
numerous applications [13–23].
In this Letter, we show that the combination of micro-

canonical inflection-point analysis [8] and the PMS enable
the systematic identification, characterization, and classifi-
cation of first- and higher-order transitions in complex
systems of any size. The analysis reveals surprising transition
features, suggesting the discrimination of regular (indepen-
dent) transitions from dependent transitions, which only
exist in combination with a regular transition. Unexpectedly,
even the two-dimensional ferromagnetic Ising model exhib-
its signals of transitions other than the established single
second-order phase transition. Furthermore, the difficulty in
uniquely identifying the compact phases in the long-standing
problem of polymer adsorption can be traced back to a
complex structure of subphases separated by higher-order
transitions. By employing the generalized analysis method
proposed here, we obtain novel results for these systems.
The microcanonical entropy, defined by SðEÞ ¼

kB ln gðEÞ, where gðEÞ is the density of states with system
energy E, contains the complete information about the
phase behavior of a system. In the thermodynamically
relevant energetic region, it is a monotonically increasing
concave function [Fig. 1]. Changes of the phase behavior
are signaled by alterations of the curvature of SðEÞ leading
to characteristic monotonic features of the inverse micro-
canonical temperature, which is given by

βðEÞ≡ dSðEÞ
dE

: ð1Þ

In energetic regions without transition signals, βðEÞ is a
strictly monotonically decreasing convex function [Fig. 1].
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Canonically, large fluctuations at the transition temper-
ature lead to a dramatically increased expectation value of
the system energy hEi, signaling a phase or pseudophase
transition. In consequence, in microcanonical analysis,
it is expected to occur in the energetic region, where the
inverse temperature βðEÞ responds least sensitively to
energy changes. However, in situations where transitions
are not identified in βðEÞ, higher-order derivatives of the
entropy might still reveal signals of cooperative behavior.
Generally, if no transition occurs, the derivatives of SðEÞ
are either monotonically increasing concave or monoton-
ically decreasing convex functions [Fig. 1] in the energetic
regime where thermodynamic phase transitions can occur.
A change in monotonicity causes an inflection point which
we call inflection point of least sensitivity if the derivative
changes least upon variation in energy and provides a
transition signal at this energy.
The typical first-order transition scenario is sketched in

Fig. 2(a). For finite systems, the entropy possesses a convex
region caused by surface effects [5,9]. The slope of the
unique double tangent across the convex regime is the
Gibbs-Maxwell hull and the energy difference between
the touching points of the double tangent and SðEÞ defines
the latent heat. In the thermodynamic limit, the convex
“intruder” disappears as surface effects become irrelevant
and the slope of the Gibbs-Maxwell line corresponds to the
inverse transition temperature. The convex region in SðEÞ
causes a “backbending” of the βðEÞ curve. If we define the
transition energy Etr associated with the least sensitive
inflection point in SðEÞ, βðEÞ has a positive-valued mini-
mum at Etr,

βðEtrÞ > 0; ð2Þ
and βðEtrÞ is the inverse transition temperature. Since the
backbending region is formed directly in the otherwise
monotonically decreasing convex βðEÞ curve, the occur-
rence of the first-order transition is independent of the
possible existence of other transition signals.
Consequently, we identify an independent second-order

phase transition by an inflection point, where βðEÞ is least
sensitive to changes in energy [see Fig. 2(b)]. The corre-
sponding derivative γðEÞ exhibits a negative-valued peak at
the transition energy, i.e.,

γðEtrÞ ¼
d2SðEÞ
dE2

�
�
�
�
E¼Etr

< 0: ð3Þ

Note that only signatures of first- and second-order
transitions are directly visible in βðEÞ. However, if such
transition signals are not found, the PMS condition can be
applied to higher derivatives of SðEÞ as well. For example,
since γðEÞ is strictly concave if no transition occurs, an
inflection point at which the γðEÞ curve behaves least
sensitively signals an independent third-order phase tran-
sition [Fig. 2(c)]. The derivative of γðEÞ near E ¼ Etr forms
a valley with a positive-valued minimum, i.e.,

δðEtrÞ ¼
d3SðEÞ
dE3

�
�
�
�
E¼Etr

> 0: ð4Þ

To generalize, we define an independent transition of
odd order (2k − 1) (where k is a positive integer), if there is
a least-sensitive inflection point in the (2k − 2)th derivative
of SðEÞ and the corresponding minimum in the (2k − 1)th
derivative of SðEÞ is positive, i.e.,

dð2k−1ÞSðEÞ
dEð2k−1Þ

�
�
�
�
E¼Etr

> 0: ð5Þ

Analogously, an independent transition of even order 2k (k
is a positive integer) is associated with a least-sensitive

FIG. 1. Typical monotony of microcanonical entropy SðEÞ and
first- to fourth-order derivatives β ¼ dS=dE;…; ϵ ¼ d4S=dE4, if
no transition occurs.

FIG. 2. Entropy and lowest-order derivatives for independent
and potential dependent transitions. Least-sensitive inflection
points are marked, but are not associated with each other. If it
occurs at all, a dependent transition is indicated by a least-
sensitive inflection point at a higher energy than the independent
transition it accompanies.
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inflection point in the (2k − 1)th derivative of SðEÞ and the
corresponding negative-valued maximum in the ð2kÞth
derivative of SðEÞ, i.e.,

d2kSðEÞ
dE2k

�
�
�
�
E¼Etr

< 0: ð6Þ

It is noteworthy that generalized inflection-point analysis
also reveals another type of transition. These dependent
transitions can only occur in coexistence with an indepen-
dent transition of lower order (see Fig. 2).
According to our proposed classification scheme, a

dependent transition of even order 2l (where l is a positive
integer) exists, if there is a least-sensitive inflection point
in the (2l − 1)th derivative of SðEÞwhich can be identified
by a positive-valued minimum in the ð2lÞth derivative in
the transition region of the corresponding independent
transition,

d2lSðEÞ
dE2l

�
�
�
�
E¼Edep

tr

> 0: ð7Þ

Consequently, a dependent transition of odd order
(2lþ 1) (with l being positive integer) is indicated by a
least-sensitive inflection point in the 2lth derivative of
SðEÞ and is characterized by a negative-valued maximum
in the (2lþ 1)th derivative:

dð2lþ1ÞSðEÞ
dEð2lþ1Þ

�
�
�
�
E¼Edep

tr

< 0: ð8Þ

It is important to note that the occurrence of an indepen-
dent transition does not necessarily imply the existence of
dependent transitions, whereas the opposite is true. Least-
sensitive inflection points indicating dependent transitions
are not simply a consequence of the monotonic shape
associated with the curve of a derivative of SðEÞ that
features an independent transition. As Fig. 2 shows, for
example, a first-order independent transition can be (but
does not necessarily have to be) accompanied by a
dependent transition of any order higher than 1.
We leave it to future work to determine the circumstances

for dependent transitions to exist and their scaling properties
in the thermodynamic limit. Since dependent transitions
always occur at a higher energy than the corresponding
independent transition, the former can be interpreted as a
precursor of the latter in the less ordered phase. This might
be of interest in applications in materials science as the
dependent transitions indicate instabilities in an otherwise
stable phase. This relationship sheds new light on our
general understanding of ordering principles leading to
phase transitions.
We now demonstrate the power of this novel method.

In the first example, we re-analyze the ferromagnetic-
paramagnetic phase transition of the two-dimensional

Ising model on a square lattice. The energy of a spin
configuration is given by E ¼ −J

P
hijisisj, where si ¼ �1

represents the possible spin orientations. Only nearest-
neighbor spin pairs contribute. The energy scale, given by
the coupling constant J, is set to unity. The extraordinary
advantage of this model is that it has been solved rigorously
[24,25]. The microcanonical entropy SðEÞ can be obtained
exactly for any system size [26] and allows for a direct
application and test of our method.
To compare the results for different system sizes L, we

introduce energies and entropies per spin e ¼ E=L2 and
s ¼ S=L2, respectively. Figure 3 shows the γ and δ
derivatives of sðeÞ and, as expected, strong second-order
transition signals are indicated by the negative-valued
maxima in γðEÞ for all system sizes studied. The transition
signal becomes more pronounced with increasing system
size. Remarkably, the value of δðeÞ at the transition energy
is independent of system size and one is reminded of the
Binder cumulant crossings [27]. It is obvious that a
microcanonical scaling analysis is worth being tested (note
that the peak value of γðeÞ must converge to zero in the
thermodynamic limit), but this is left to future work.
More interesting in the given context is the revelation of

additional transition signals shadowing the well-known
independent second-order phase transition at etr ≈ −1.403
(T ≈ 2.276). At the lower energy etr ≈ −1.492 (T ≈ 2.235),
δðeÞ exhibits a positive-valued minimum for L ¼ 128 and
192, which corresponds to an independent transition of
third order (for the smaller systems L ¼ 32 and 64, it is of

(b)

(a)

FIG. 3. Derivatives of microcanonical entropies (a) γðeÞ;
(b) δðeÞ of the ferromagnetic Ising model on a square lattice
for various system sizes L ¼ 32, 64, 128, and 192 as functions of
e ¼ E=L2.

PHYSICAL REVIEW LETTERS 120, 180601 (2018)

180601-3



fourth order). Furthermore, the inset in Fig. 3(b) reveals a
negative peak at higher energies edeptr ≈ −1.057 (T ≈ 2.561)
for all systems studied. It features an additional dependent
third-order transition in the paramagnetic phase.
It is worth noting that all transition signals become more

significant with increasing system size, implying that the
two higher-order transitions may also exist in the thermo-
dynamic limit. As Fig. 4 shows, the transition temperatures
remain well separated for larger systems. A thorough
scaling analysis is needed and more detailed studies are
necessary to characterize their nature, though. Because of
their lower significance compared to the critical transition,
it is likely that in all previous studies their effects have been
absorbed in corrections-to-scaling of the power laws of the
critical transition and, hence, remained undetected.
As a second example, we study a coarse-grained model

of a grafted lattice polymer interacting with an adhesive
surface. The energy of the system can be written as
Eðns; nmÞ ¼ −ns − snm, where ns and nm denote the
number of nearest-neighbor monomer-substrate contacts
and nearest-neighbor nonbonded monomer-monomer con-
tacts, respectively [28]. The dimensionless reciprocal
solubility s effectively controls the quality of the implicit
solvent. Simulations were performed using the contact-
density chain-growth algorithm, which yields the number
of states for given ðns; nmÞ pairs [9]. This so-called contact
density can be transformed into the density of states for any
given value of s without additional simulations. By means
of generalized inflection-point analysis, transition signals
are located and classified, and the microcanonical transition
temperatures identified. Accumulating this information, we
can construct the T − s hyperphase diagram. For a polymer
with 503 monomers, it is shown in Fig. 5. At high
temperatures, the polymer is desorbed and expanded (DE)
in the free space. Below the second-order adsorption

transition, larger sections of the polymer get adsorbed onto
the substrate (AE2).
Under sufficiently good solvent conditions, the polymer

forms fully adsorbed and expanded conformations (AE),
whereas adsorbed globular (AG) or crystalline and multi-
layered (ACM) structures dominate otherwise. In the
ACM subphases, the compactness of the polymer is
divided into different levels. The ACMa subphase con-
tains the most compact conformations, whereas the
compactness of the structures is the least in the ACMe
subphase. In the conformational phase AC1, the polymer
forms a compact, filmlike single layer on the substrate.
The identification of the compact phases has been a long-
standing problem, but our novel analysis method provides
a unique approach with no room for ambiguities. It should
be noted that the simulation of larger systems in the
compact phases is extremely difficult, but conventional
scaling analyses of the adsorption-desorption transition
yield promising results [29].
In the novel statistical analysis method introduced in

this Letter, least sensitive inflection points in the micro-
canonical entropy and its derivatives are used as indicators
of phase and pseudophase transitions. The hierarchical
classification scheme applies to two different classes of
transitions, which we call independent and dependent.
Dependent transitions can only exist in combination with
a lower-order independent transition and may be inter-
preted as precursors of the latter. As a proof of concept for
the power of the method we studied the two-dimensional
Ising model, which revealed additional higher-order
transitions in the vicinity of the critical transition, and
polymer adsorption. In the latter example, the complete
hyperphase diagram in solubility-temperature space could
be constructed, which helps us better understand the

FIG. 5. Phase diagram of a grafted polymer interacting with an
adhesive substrate (only lines of independent transitions are
shown). Representative conformations in the respective phase
regions are also shown. Dotted lines correspond to transition lines
of higher than fourth order.

FIG. 4. Transition temperatures of the 2D Ising model identi-
fied by our method for various system sizes (lines are guides to
the eye). The dashed line marks the Onsager solution for
the critical point in the thermodynamic limit, T tr ¼ 2J=
kB lnð1þ

ffiffiffi
2

p Þ.

PHYSICAL REVIEW LETTERS 120, 180601 (2018)

180601-4



structure of the compact phases. An in-depth discussion of
the intriguing details is future work.
The methodology presented here is versatile and prom-

ising as it can be universally applied to complex physical
systems of any size. The consequently hierarchical scheme
significantly advances previous methods in identifying and
classifying phase and pseudophase transitions and is
particularly useful for applications in the emerging field
of complex systems on mesoscopic scales with high
cooperativity, for which no thermodynamic limit exists.
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