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We present the first experimental confirmation of the quantum-mechanical prediction of stronger-than-
binary correlations. These are correlations that cannot be explained under the assumption that the
occurrence of a particular outcome of an n ≥ 3-outcome measurement is due to a two-step process in
which, in the first step, some classical mechanism precludes n − 2 of the outcomes and, in the second step,
a binary measurement generates the outcome. Our experiment uses pairs of photonic qutrits distributed
between two laboratories, where randomly chosen three-outcome measurements are performed. We report
a violation by 9.3 standard deviations of the optimal inequality for nonsignaling binary correlations.
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Introduction.—Quantum mechanics is so successful that
it is difficult to imagine how to go beyond the present
theory without contradicting existing experiments.
However, going beyond our present understanding of
quantum mechanics can enable us to solve long-standing
problems like the formulation of quantum gravity. Some of
the most puzzling questions in quantum theory are con-
nected to the measurement process [1]. To go beyond our
present understanding of measurements, we use recent
axiomatizations of quantum theory [2–6] that identify
quantum theory as a special case within the general
probabilistic theories. We identify an axiom related to
the structure of measurements that can be modified in a way
not contradicting existing experimental evidence, but mak-
ing different predictions.
In quantum theory, two-outcome measurements are

described by pairs of operators, ðE; 1 − EÞ. A quantum
measurement is feasible whenever both operators are
positive semidefinite. Conversely, in any general probabi-
listic theory, if ðE1; E2;…; EnÞ represents a feasible
n-outcome measurement, then any postprocessing to a
two-outcome measurement ðE1

0; E2
0Þ is also a feasible

measurement. However, according to quantum theory,
ðE1; E2;…; EnÞ is already a feasible n-outcome measure-
ment whenever all postprocessings to a two-outcome
measurement ðE0; 1 − E0Þ are feasible. This suggests a
natural alternative, namely, that feasible n-outcome mea-
surements are only those that can be implemented by
selecting from two-outcome measurements. Such measure-
ments are hence binary [7] and can be implemented as a

two-step process in which, in the first step, some classical
mechanism excludes all but two of the outcomes and, in a
second step, the final output is produced by a genuine two-
outcome measurement. The concept is illustrated in Fig. 1.
Correlations between the outcomes of measurements

performed by two parties, called Alice and Bob, are
described by joint probabilities Pða; bjx; yÞ, where x and
y are Alice’s and Bob’s measurement settings, respectively,
and a and b are Alice’s and Bob’s measurement outcomes,
respectively. “Binary nonsignaling correlations” are those
which are both nonsignaling, i.e.,

P
bPða; bjx; yÞ≡

PAðajxÞ and
P

aPða; bjx; yÞ≡ PBðbjyÞ, and have only
two nontrivial outcomes, i.e., PAðajxÞ ¼ 0 except for
two outcomes a and PBðbjyÞ ¼ 0 except for two outcomes
b, and the convex hull thereof [7]. Such correlations
also include cases that are forbidden in quantum theory
as, for example, Popescu-Rohrlich boxes [8] maximally
violating the Clauser-Horne-Shimony-Holt inequality [9].
Interestingly, according to quantum theory, there exist
stronger-than-binary nonsignaling correlations [7]. A major
problem, however, has been to identify how they can be
actually observed.
The experiment presented here aims at the maximum

violation predicted by quantum theory of the optimal and
unique inequality [10] satisfied by binary nonsignaling
correlations. The experiment is a bipartite Bell-type experi-
ment in which Alice randomly chooses between two
different measurements, x ¼ 0, 1, each of them with three
possible outcomes, a ¼ 0, 1, 2, and Bob randomly chooses
between two different measurements, y ¼ 0, 1, each of
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them with three possible outcomes, b ¼ 0, 1, 2. Binary
nonsignaling correlations satisfy the inequality

Ia ≤ 1; ð1Þ
where

Ia ¼
X

k;x;y¼0;1

ð−1ÞkþxþyPðk; kjx; yÞ; ð2Þ

and the outcomes a ¼ 2 and b ¼ 2 do not occur explicitly
(see below). In contrast, according to quantum theory, the
maximal value for Ia is

Ia ¼ 2ð2=3Þ3=2 ≈ 1.089: ð3Þ

This maximum quantum value can be achieved by prepar-
ing two qutrits in a particular state and making some
particular three-outcome local measurements (see below).
In the experiment, we have obtained

Ia ¼ 1.066� 0.007; ð4Þ
which implies a violation of the inequality in Eq. (1) with a
statistical significance corresponding to 9.4 standard devi-
ations. A further analysis of the data (see below) shows that
residual systematic errors do not explain this violation.

Consequently, general probabilistic theories in which
n-outcome measurements are only binary are falsified by
showing that there are correlations that are not binary
nonsignaling. This also shows that, in nature, there are
genuinely ternary measurements, thus demonstrating that
the measurement process in quantum theory cannot be
explained as a two-step process as in Fig. 1(a). In fact, the
result of the experiment demonstrates that none of the four
measurements (Alice’s or Bob’s) can be binary.
Bound on binary nonsignaling correlations.—The bound

Ia ≤ 1 in Eq. (1) has been proved in Ref. [10] by computer-
based methods. Here we prove explicitly that the bound
Ia ≤ 1 in Eq. (1) is valid for binary nonsignaling correla-
tions. We proceed by defining the auxiliary quantities

XA ¼
X

a;b;x;y∶a≠2
ð−1ÞaþxþyPða; bjx; yÞ and ð5aÞ

XB ¼
X

a;b;x;y∶b≠2
ð−1ÞbþxþyPða; bjx; yÞ: ð5bÞ

These clearly obey XA ¼ 0 and XB ¼ 0 for all nonsignaling
correlations. We then have the inequality

3Ia − XA − XB ≤
X

a;b;x;y

Pða; bjx; yÞ≡ 4; ð6Þ

which holds because the left-hand side of Eq. (6) has only
coefficients �1. Consequently, Ia ≤ 4

3
holds for all non-

signaling correlations.
For the bound on binary nonsignaling correlations, it is

enough to consider the extremal correlations. By definition,
for those there exist certain indices ax ∈ f0; 1; 2g for x ¼ 0,
1 and by ∈ f0; 1; 2g for y ¼ 0, 1 such that Pða; bjx; yÞ ¼ 0

holds whenever a ¼ ax or b ¼ by. The reminder of the
entries are then extremal two-outcome correlations and
hence are either deterministic, Pða; bjx; yÞ ∈ f0; 1g, or
they form a Popescu-Rohrlich box [8], implying
Pða; bjx; yÞ ∈ f0; 1

2
g. As a consequence, the bound on Ia

must be a multiple of 1
2
and must not exceed 4

3
. This proves

Ia ≤ 1 for binary nonsignaling correlations. This bound is
also tight, as can be seen by considering the outcome
assignment a ¼ x and b ¼ 2y.
Experimental test.—Our experimental setup is described

in Fig. 2 and further develops techniques fromRefs. [11–13]
optimized for testing the prediction in Eq. (3). The source
generates the two-photon state

jψi ¼ ð
ffiffiffi
2

p
jHuHui þ jVuVui − jHlHliÞ=2; ð7Þ

where Hu (Vu) denotes horizontal (vertical) polarization in
the upper path andHl denotes horizontal polarization in the
lowerpath.Consequently, jHui, jVui, and jHlidefine aqutrit
for Alice and for Bob. The visibility of the entangled state is
0.98� 0.01. Each photon of the pair is distributed to a
different laboratory and measured there locally.

(b)

(a) (2)(1)

FIG. 1. Two possible explanations for the measurement proc-
ess. Suppose a measurement with three possible outcomes
represented by red, green, and blue lights. The process that
generates the final outcome (represented by the blue light
flashing) can be either (a) a sequence of two steps: (1) The
red outcome is precluded by a classical mechanism (e.g., the
initial position of the measured system). (2) A general two-
outcome measurement selects between the two remaining out-
comes. Or (b), the measurement is genuinely ternary in the sense
that it cannot be explained as in (a).
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In each laboratory, the settings 0 and 1 are chosen
randomly by means of a random number generator. The
measurement outcomes for setting 0 are projectors onto the
one-dimensional spaces spanned by

jη0j0i ¼ ð2jHui − ð1þ
ffiffiffi
3

p
ÞjVui − ð1 −

ffiffiffi
3

p
ÞjHliÞ=

ffiffiffiffiffi
12

p
;

jη1j0i ¼ ð2jHui − ð1 −
ffiffiffi
3

p
ÞjVui − ð1þ

ffiffiffi
3

p
ÞjHliÞ=

ffiffiffiffiffi
12

p
;

jη2j0i ¼ ðjHui þ jVui þ jHliÞ=
ffiffiffi
3

p
; ð8Þ

where the projector onto jηkj0i corresponds to outcome k.
Similarly, for setting 1,

jη0j1i ¼ ð2jHui þ ð1þ
ffiffiffi
3

p
ÞjVui þ ð1 −

ffiffiffi
3

p
ÞjHliÞ=

ffiffiffiffiffi
12

p
;

jη1j1i ¼ ð2jHui þ ð1 −
ffiffiffi
3

p
ÞjVui þ ð1þ

ffiffiffi
3

p
ÞjHliÞ=

ffiffiffiffiffi
12

p
;

jη2j1i ¼ ðjHui − jVui − jHliÞ=
ffiffiffi
3

p
: ð9Þ

These settings together with the state jψi yield the maximal
quantum value of Ia; see Eq. (3). In our setup, the detectors
D1–D3 correspond to outcomes 0–2 for Alice and the
detectors D4–D6 correspond to outcomes 0–2 for Bob. The
measurements are complete with respect to the qutrit space
spanned by jHui, jVui, and jHli, while any component of
the incoming photon that is outside of the qutrit space
remains undetected. In addition, the imperfect efficiency of
the detectors, together with the coincidence logic, yield an
overall detection efficiency of 0.087� 0.001. We account
for both effects by implementing the fair sampling
assumption, that the coincidences recorded are a represen-
tative subsample of what would have been recorded, if all
photons were detected.
Data are collected in 4500 runs, with a collection time of

0.5 s for each run. Within each run, the measurement
settings of Alice and Bob remain fixed. In total, 75 544
coincidences have been recorded.

FIG. 2. Experimental setup. The source of pairs of photons and the first measurement party, Alice, are in laboratory Lab1, while the
second measurement party, Bob, is in laboratory Lab2. The distance between Alice’s and Bob’s measurement setups is approximately
8 m. The pump laser is a continuous wave laser of 404 nm wavelength and 100 mW power. Subsequently, beam displacers are used to
construct phase-stable interferometers. The beam displacers introduce a 4.21 mm displacement of the vertically polarized component;
beam displacer BD1 operates at 404 nm and is approximately 36.41 mm long, beam displacers BD2–BD5 operate at 404 nm and are
approximately 39.70 mm long. The pump beam is separated into two paths by means of the half wave plates HWP1–HWP3 and BD1,
where the fast axis of HWP1 is oriented at 15° with respect to the horizontal axis, HWP2 is oriented at 27.37°, and HWP3 at 0°. After
BD1 and HWP1–HWP3, the pump state is ð ffiffiffi

2
p jVui þ jHui − jVliÞ=2, where H (V) stands for horizontal (vertical) polarization and u

(l) denotes the upper (lower) path. The two paths of the pump beam are then focused on two spots of two 0.5 mm thick type-I cut
β-borate crystals (BBO) to generate the spatial mode and polarization mode hybrid entangled two-photon state jψi; see Eq. (7). The local
measurement setting 0, see Eq. (8), and 1, see Eq. (9), for Alice and Bob are constructed using the polarizing beam splitters PBS1 and
PBS2, the half wave plates HWP4–HWP13, and BD2–BD4. The orientations of HWP4–HWP13 depend on the measurement setting
and are chosen according to Table I. HWP4, HWP8, HWP9, and HWP13 are mounted in electric rotators to switch the measurement
settings automatically and the random number generators Quantis-USB-4M (ID Quantique) are used to locally select the measurement
basis. Six fiber coupled single photon detectors D1–D6 are used to detect the photons. Interference filters with a bandwidth of 3 nm are
used before each detector to remove background photon noise (not shown). Coincidences between D1–D3 and D4–D6 are detected with
the coincidence logic ID800 (ID Quantique, not shown), using a coincidence window of 3.2 ns.
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Evaluation of the data.—The 4500 runs with random
measurement settings for Alice and Bob, combine to 1060
complete data sets with all four combinations of settings
and an average of 67.1 coincidences and for each complete
set. We evaluate three conditions on the data: (i) normali-
zation, i.e., whether

P
a;bNrða; bjx; yÞ is independent of x

and y; (ii) nonsignaling, i.e., whether
P

aNrða; bjx; yÞ is
independent of x and

P
bNrða; bjx; yÞ is independent of y;

and (iii) binary correlations, tested by means of the
inequality

X

k;x;y¼0;1

ð−1ÞkþxþyNrðk; kjx; yÞ −
1

4

X

a;b;x;y

Nrða; bjx; yÞ ≤ 0:

ð10Þ

Hereby Nrða; bjx; yÞ denotes the number of coincidences
for each of the complete data sets r ¼ 1;…; 1060 when the
outcome of Alice (Bob) is a (b) and the setting is x (y). We
compute the mean m and the variance v over the 1060 runs
for each condition, so that t ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1060=v

p
is distributed

according to the Student-t distribution with g ¼ 1059
degrees of freedom. In this regime, after rescaling byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg − 2Þ=gp

, the Student-t distribution is very close to a
normal distribution. We therefore obtain the p-value of the

joint conditions (i) or (ii) using the χ2 distribution, where
there are three independent conditions in (i) and 11
independent conditions in (ii). The obtained values are
given in Table II as “Full data set.”
The full data set shows a violation of the inequality in

Eq. (10) with a significance corresponding to 9.4 standard
deviations. However, also the nonsignaling conditions (ii)
are violated by 3.6 standard deviations. The origin of this
apparent signaling is the unavoidable fluctuations in the
pumping laser. This leads to statistically significant
(apparent) signaling since the statistical error is smaller
than the error due to the imperfections. A maximum-
likelihood fit imposing the nonsignaling constraints
increases the value of Ia, so that we conclude that the
significance of the violation of Ia is nonetheless genuine.
To further support this assertion, we reduce the set of
samples so that the statistical error is again dominant and
consider a reduced data set with only one-fifth of the
complete data sets; see Table II, “Reduced data set.” There,
although the shot noise is increased by a factor of

ffiffiffi
5

p
≈ 2.2,

a violation of the inequality in Eq. (10) by 4.6 standard
deviations remains, while the violation of the nonsignaling
conditions becomes negligible.
Finally, we compute the empirical frequencies

Prða; bjx; yÞ ¼
Nrða; bjx; yÞP

a0;b0Nrða0; b0jx; yÞ
ð11Þ

for each r. This allows us to compute for each repetition the
value of Ia. In Eq. (4) and Table II, we report the resulting
mean value and standard error.
Conclusion.—We have presented an experimental vio-

lation with pairs of entangled qutrits of the optimal
inequality for nonsignaling binary correlations. Our result
(i) provides compelling evidence against two-step explan-
ations of the measurement process, (ii) falsifies nonsignal-
ing binary theories as possible descriptions of nature, apart
from the detection and locality loopholes, and (iii) shows,
apart from these loopholes, that in nature there exist
stronger-than-binary nonsignaling correlations, i.e., corre-
lations that, in particular, cannot be reproduced using
Popescu–Rohrlich boxes. The experiment also illustrates
how the maturity and refinement achieved by the exper-
imental techniques developed for quantum communication
and quantum information processing can be used to test

TABLE I. Angles of the fast axis of the half wave plates (HWPs) with respect to the horizontal axis as used in the
measurement setups of Alice and Bob; see Fig. 2.

HWP4 HWP5 HWP6 HWP7 HWP8

Measurement HWP9 HWP10 HWP11 HWP12 HWP13

Setting 0 (deg) −22.5 0 45 17.63 37.5
Setting 1 (deg) 22.5 0 45 17.63 −37.5

TABLE II. p-values for (i) joint normalization conditions,
(ii) joint nonsignaling conditions, and (iii) the inequality in
Eq. (10). “Coin tosses” is q if the condition to hold is as
plausible as obtaining q times heads in a row when tossing a fair
coin. “Standard deviations” is s if the condition to hold is as
plausible as obtaining a modulus greater than s from a normal
distributed random variable.

Condition p-value Coin tosses Standard deviations

Full data set using all 1060 repetitions: Ia ¼ 1.066� 0.007
(i) 0.213 2.23 1.25
(ii) 3.66 × 10−4 11.4 3.56
(iii) 5.95 × 10−21 67.2 9.39
Reduced data set using every fifth data set: Ia ¼ 1.08� 0.02
(i) 0.340 1.56 0.954
(ii)a 0.059 4.08 1.89
(iii) 4.72 × 10−6 17.7 4.58
aThe χ2 value is unexpectedly below the median of the χ2

distribution and the p-value has been multiplied with a
conservative factor of 2.
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subtle predictions of quantum theory and obtain detailed
insights about how nature works.
Data repository.—The complete data set is publicly

available by following the link in Ref. [14]. We encourage
readers who want to expand our work with further data
analysis to do so.

This work was supported by the National Key Research
and Development Program of China
(No. 2017YFA0304100), the National Natural Science
Foundation of China (No. 11374288, No. 11274289,
No. 61327901, No. 11474268, No. 11325419), the Key
Research Program of Frontier Sciences, CAS
(No. QYZDY-SSW-SLH003), the Fundamental Research
Funds for the Central Universities, Projects No. FIS2014-
60843-P, “Advanced Quantum Information,” and
No. FIS2015-67161-P, “Quantum Matter: From
Principles to Applications” (MINECO, Spain), with
FEDER funds, the FQXi Large Grant “The Observer
Observed: A Bayesian Route to the Reconstruction of
Quantum Theory,” the DFG (Forschungsstipendium
No. KL 2726/2-1), the Basque Government (Project
No. IT986-16), the ERC (Starting Grant No. 258647/
GEDENTQOPT and Consolidator Grant No. 683107/
TempoQ), the National Research, Development and
Innovation Office NKFIH (Hungary) (No. K111734 and
No. KH125096), and by the Project “Photonic Quantum
Information” (Knut and Alice Wallenberg Foundation,
Sweden).

*bhliu@ustc.edu.cn
†cfli@ustc.edu.cn
‡matthias.kleinmann@uni-siegen.de
§tvertesi@atomki.mta.hu
∥adan@us.es

[1] Quantum Theory and Measurement, edited by J. A. Wheeler
and W. H. Zurek (Princeton University Press, Princeton,
New Jersey, 1983).

[2] L. Hardy, Quantum theory from five reasonable axioms,
arXiv:quant-ph/0101012.

[3] B. Dakić and Č. Brukner, Quantum theory and beyond: Is
entanglement special?, in Deep Beauty. Understanding the
Quantum World through Mathematical Innovation, edited
by H. Halvorson (Cambridge University Press, New York,
2011), p. 365.

[4] L. Masanes and M. P. Müller, A derivation of quantum
theory from physical requirements, New J. Phys. 13, 063001
(2011).

[5] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Informa-
tional derivation of quantum theory, Phys. Rev. A 84,
012311 (2011).

[6] L. Hardy, Reformulating and reconstructing quantum
theory, arXiv:1104.2066.

[7] M. Kleinmann and A. Cabello, Quantum Correlations are
Stronger than All Nonsignaling Correlations Produced
by n-Outcome Measurements, Phys. Rev. Lett. 117,
150401 (2016).

[8] S. Popescu and D. Rohrlich, Quantum nonlocality as an
axiom, Found. Phys. 24, 379 (1994).

[9] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable
Theories, Phys. Rev. Lett. 23, 880 (1969).
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