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We report quantum Monte Carlo evidence of the existence of large gap superfluidity in electron-hole
double layers over wide density ranges. The superfluid parameters evolve from normal state to BEC with
decreasing density, with the BCS state restricted to a tiny range of densities due to the strong screening
of Coulomb interactions, which causes the gap to rapidly become large near the onset of superfluidity.
The superfluid properties exhibit similarities to ultracold fermions and iron-based superconductors,
suggesting an underlying universal behavior of BCS-BEC crossovers in pairing systems.
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There are intense ongoing experimental efforts to
observe superfluidity in electron-hole double layer systems,
including double quantum wells in GaAs-AlGaAs hetero-
structures, double graphene monolayers, double graphene
bilayers, and hybrid graphene-GaAs structures [1–5]. A
recent very significant experimental advance by multiple
groups has been the fabrication of closely spaced electron-
hole double graphene bilayers with carrier densities tunable
by metal gates [6–9]. Insertion of a few layers of hexagonal
boron nitride between the bilayers creates an insulating
barrier. This can be as thin as 1 nm while still blocking
tunneling of carriers between the bilayers, permitting the
electrons and holes to interact with a very strong Coulomb
attraction.
Condensation of electron-hole pairs into a BEC super-

fluid state in double graphene bilayers has been exper-
imentally demonstrated in the quantum Hall regime with a
magnetic field [8,9], opening the way to the generation of
quantum coherent macroscopic states in spatially separated
two-dimensional sheets.
Room temperature superfluidity had in fact been pre-

dicted earlier in electron-hole double graphene monolayers
[10], but it was later established that since a graphene
monolayer remains blocked in the weakly coupled regime,
strong screening always suppresses the superfluidity [11].
Double electron-hole graphene bilayers were subsequently
proposed to overcome this problem [12], combining ideas
for the realization of high-Tc superfluidity with the ability
to move across the BCS-BEC crossover by changing the
carrier densities using metal gates. This ability to tune the
system into the strong-coupling regime is key to obtaining a
superfluid in a solid-state device at experimentally acces-
sible conditions [12], offering a fascinating alternative to

ultracold fermionic atoms for studying superfluid physics
across the BCS-BEC crossover.
With superfluidity in cold atoms, quantum Monte Carlo

(QMC) results [13–15] were from the outset integrated
closely with experiments and theory to understand and
control the phenomenon. QMC simulations are extremely
useful in any strongly correlated condensed matter system
where there is no small parameter that can be used in
perturbative expansions or controllable diagrammatic
approximations. For double layer electron-hole systems,
QMC simulations [16,17] are of key importance since the
superfluid phase arises from a complicated competition
between the long-ranged Coulomb interlayer attraction
and intralayer repulsion. Our work provides a comprehen-
sive characterization of the superfluid properties of electron-
hole double layers at zero temperature, and establishes the
density range in which the condensate exists. Our predictions
that too high a density kills superfluidity and of the existence
of a BCS-BEC crossover regime at accessible intermediate
densities will be extremely useful in guiding experiments.
We use state-of-the-art QMC methods to determine the
dependence of BCS-like effective parameters on the equal
carrier densities, with the distance separating the layers fixed
at the value that maximizes exciton formation [17–19].
The boundary between the crossover and BEC regimes is

of great interest because the pseudogap transforms into a
real gap associated with the molecular phase near this
boundary [20]. The BCS-BEC crossover has been recently
observed in the shallow Fermi surface pockets of iron-
based superconductors [21,22].
The zero temperature BCS-BEC crossover [23,24] can

be traced by following the evolution of the condensate
fraction c, the average radius of the superfluid pairs rex
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[25], or the superfluid gap Δ. Here we use explicit many-
body wave-function-based methods to track the evolution
of the superfluid with carrier density in symmetric electron-
hole layers. We directly obtain total energies, condensate
fractions, and pair radii, and we extract superfluid gaps and
chemical potentials from total energies using BCS-like
relations with effective parameters. We employ methods
similar to those applied in Ref. [26] for coupled layers of
dipolar fermions.
The condensate fraction cmeasures the fraction of carriers

in the condensate [27–30]. In the BCS regime c < 0.2, with
only a small fraction of the carriers near the Fermi surface
forming the condensate, while in the BEC regime c > 0.8,
so almost all the carriers form local molecular bosonic pairs,
and condense. Using the pair radius rex, the BCS regime is
characterized by kFrex ≫ 1, where kF is the Fermi wave
vector, while in the BEC regime the compact pairs corre-
spond to kFrex < 1. The parameter kFrex was the first to
be studied in investigations of the BCS-BEC crossover in the
high-Tc cuprate superconductors [31]. rex determines the
correlation length of the pairs, which enters the expressions
for the properties of the vortex state of the superfluid and all
other quantities affected by the spatial structure of the
superfluid wave function, such as Josephson and Andreev
reflection effects [32].
In contrast to c and rex, the superfluid gap is exper-

imentally straightforward to measure using angle-resolved
photoemission spectroscopy (ARPES), scanning tunneling
microscopy, or measurements of the specific heat.
Knowledge of the evolution of the superfluid gap with
the external parameters is of fundamental relevance in
designing experiments to detect and characterize electron-
hole superfluidity. It is possible to link the entry into the
BCS-BEC crossover regime as determined by c and kFrex
to Δ=EF ∼ 1 at zero temperature [33]. In our calculations
we also monitor the evolution of the pseudo-Luttinger wave
vector kmin at which the k-dependent excitation energy
passes through its minimum. kmin can be traced by ARPES,
because it directly affects the shape of the remnant Fermi
surface in the broken symmetry phase at zero temperature.
With our results for Δ, μ, c, and rex as functions of

density, we are then in a position to follow the evolution of
the system through the weak-coupling regime, the super-
fluid BCS-BEC crossover regime, and the BEC regime,
enabling comparisons with predictions from various micro-
scopic theories.
In our calculations we use excitonic Hartree units,

ℏ¼jej¼m�
e¼ κ4πϵ0¼1, wherem�

e is the effective electron
mass and κ is the relative permittivity of the system, and
we obtain energies in units of Ha� ¼ ðm�

e=meÞκ−2Ha
and distances in units of a�0 ¼ κðme=m�

eÞa0. For reference,
the relative permittivity for bilayer graphene (BLG)
encapsulated in few-layer hexagonal boron nitride
(hBN) is κ ¼ 2 [34], and the effective mass is m�

e ¼
0.04me [35].

We simulate a finite version of the paramagnetic, equal-
mass electron-hole double layer system with parabolic
single-particle energy dispersion using square simulation
cells of area A subject to periodic boundary conditions,
with N particles in each layer. The in-layer particle density
is defined via the density parameter rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ðπNÞp

. We
run calculations for systems containing N ¼ 58 electron-
hole pairs; tests with systems of N ¼ 114 electron-hole
pairs show that finite-size errors are small in our results
[36]. We use a fixed interlayer separation of d=a�0 ¼ 0.4,
slightly greater than the largest d at which biexciton
formation is favorable [17–19], and vary the density
between rs=a�0 ¼ 1.75 and 15.
At all densities considered we evaluate total energies,

condensate fractions, and pair-correlation functions (PCFs)
using the variational quantum Monte Carlo (VMC) method
[38,39]. Wave function parameters can be optimized within
the VMC method [40,41], and the accuracy of VMC
expectation values depends on the quality of the resulting
wave function. The more computationally costly diffusion
quantum Monte Carlo (DMC) method [39,42] employs
stochastic projection to extract the lowest-energy state
compatible with the nodal surface of a VMC-optimized
trial wave function. Once the time-step and population-
control biases are eliminated [43–45], the accuracy of the
DMCmethod depends only on the accuracy of the nodes of
the trial wave function. We have performed DMC calcu-
lations at selected densities representative of the weak-
coupling, crossover, and strong-coupling regimes. Thus,
our DMC calculations serve as quantitative corrections to
our VMC results throughout the density range considered.
We use trial wave functions of the form Ψ ¼

eJDe↑h↓De↓h↑, where eJ is a Jastrow correlation factor
[46,47], imposing the Kato cusp conditions [48], andDe↑h↓

andDe↓h↑ are pairing determinants [16,17]. In systems with
an additional (up-spin) electron, we complete the corre-
sponding determinant with a plane-wave orbital of wave
vector k. Details of our trial wave functions are given in the
Supplemental Material [36]. We use the CASINO code for
our calculations [49].
The main properties of the BCS-BEC crossover at low

temperature are captured by BCS theory, as demonstrated
with ultracold fermions. When the gap equation is coupled
to the density equation, the excitation energy εðkÞ corre-
sponding to the addition of an electron of wave vector k
follows the BCS dispersion relation [26],

εðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2=2m� − μÞ2 þ Δ2

q
; ð1Þ

where μ, m�, and Δ are the chemical potential, effective
mass, and superfluid gap of the electron quasiparticle,
respectively. εðkÞ therefore contains the parameters that
characterize the superfluid state. This excitation energy can
be obtained from ab initio total energies as
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εðkÞ ¼ EAðN þ 1=2; kÞ − EAðNÞ − μQMCðNÞ; ð2Þ

where EAðNÞ is the energy of a system of area A containing
N electron-hole pairs, EAðN þ 1=2; kÞ is the energy of a
system of area A containing N electron-hole pairs and
one additional electron of associated wave vector k, and
μQMCðNÞ ≈ 1

4
½EAðN þ 1Þ − EAðN − 1Þ� is the chemical

potential of the system. Note that μQMC differs from the
mean-field μ due to many-body effects.
We simulate systems with N, N þ 1, and N − 1 electron-

hole pairs, and systems with N electron-hole pairs and an
unpaired electron at several wave vectors k. We then
compute εðkÞ at each k using Eq. (2) and fit the resulting
values to Eq. (1) with m�, μ, and Δ as fitting parameters.
Following tests [36], we use wave vectors such that
0 ≤ k < kcut; we set kcut=kF ¼ 1.5 at high densities and
use larger cutoff values at low densities. Although the
superfluid gap is expected to be k dependent [11,12], our
calculations do not yield any significant variation of Δ with
k in the ranges of k we have considered [36]. Figure 1
shows a plot of the DMC values of εðkÞ for densities of
rs=a�0 ¼ 2, 5, and 10, along with the resulting fits to Eq. (1).
The fits follow the DMC data remarkably well, indicating
that the BCS dispersion relation provides a robust descrip-
tion of the ab initio results.
In Fig. 2 the zero-temperature superfluid gap is reported

as a function of rs, both in excitonic Hartree units and
relative to EF. At high densities there is no superfluidity
because the electron-hole pairing interaction is strongly
screened [12]. Near the onset density, the electron-hole
condensate is already close to the BCS-BEC crossover
boundary. As rs=a�0 increases above 2 there is a very steep
increase in the gap, which exceeds Δ=EF ∼ 1 by rs=a�0 ∼ 3.
Δ=EF > 1 signals entry into the BCS-BEC crossover
regime, so this occurs practically immediately after the
onset of superfluidity. The steep rise in Δ is associated with
strong screening at high densities [12]. Consequently,
the weakly coupled BCS superfluidity regime, for which
Δ=EF ≪ 1, exists at most in a tiny range of densities.
Figure 3(a) shows μ as a function of rs. μ becomes

negative by rs=a�0 ∼ 6, which signals entry into the BEC

regime. In Figs. 3(b) and 3(c) we plot the location of the
minimum of εðkÞ, kmin ¼ argminkεðkÞ, andm� as functions
of rs. The value of kmin=kF tracks the collapse of the Fermi
surface, going from unity in the weak-coupling regime to
zero in the BEC regime. The DMC results suggest that the
Fermi surface fully collapses at a somewhat lower density
than predicted by VMC.
In Fig. 3(c) the quasiparticle mass m� has a minimum of

less than the effective electron mass m�
e near where the

superfluid gap is maximal, rs=a�0 ∼ 5. This is indicative of
the interplay between the intralayer repulsion and the
interlayer attraction, leading to quasiparticles in the super-
fluid state with masses m� < m�

e for intermediate rs. This
behavior of m� differs from theoretical and experimental
findings in ultracold fermions in two dimensions, where the
interaction is purely attractive. There,m� ≳m�

e always, and
it varies monotonically with rs. The quasiparticle mass of
the two-dimensional electron gas is extensively discussed
in Ref. [50]. Experimental measurements indicate a regime
of small rs=a�0 < 3 in which the quasiparticle mass is
smaller than the effective electron mass, see Fig. 4 of
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FIG. 1. DMC estimates of εðkÞ as a function of the magnitude k
of the wave vector of the additional electron, at rs=a�0 ¼ 2, 5, and
10. The solid lines are fits of the DMC data to Eq. (1).
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FIG. 2. Superfluid gap Δ, obtained by fitting the VMC and
DMC data to Eq. (1), as a function of rs, (a) in excitonic Hartree
units, and (b) relative to EF. The dotted lines interpolating the
DMC results are intended as a guide to the eye.
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FIG. 3. (a) μ, (b) kmin, and (c) m�, obtained by fitting the VMC
and DMC data to Eq. (1), as functions of rs. The dotted lines
interpolating the DMC results are intended as a guide to the eye.
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Ref. [50]. Thus, competition between intralayer repulsion
and interlayer attraction in the electron-hole double layer
can lead to small m� < m�

e, as we find.
The boundaries between the BCS, BCS-BEC crossover,

and BEC regimes can be determined from the condensate
fraction c, which is defined as

c ¼ ðA2=NÞ lim
r→∞

ρð2Þeh ðrÞ; ð3Þ

where ρð2Þeh ðrÞ is the translational-rotational average of the
two-body density matrix for electron-hole pairs [36]. We
have evaluated c using the estimator of Ref. [51] which
removes one-body contributions to ease extrapolation to the
r → ∞ limit. The results for c shown in Fig. 4(a) are
consistent with the conclusions drawn from the behavior
of μ. The condensate fraction is negligible for rs=a�0 ≲ 1.5
[17]. As rs=a�0 increases, c grows rapidly to ∼0.2 by
rs=a�0 ¼ 2, signaling entry into the BCS-BEC crossover
regime. As rs=a�0 is further increased, c increases substan-
tially and by rs=a�0 ¼ 8 it exceeds c ¼ 0.8, thus entering
the BEC regime.
We also compute the translational-rotational average of

the electron-hole PCF gehðrÞ [36], which allows us to
evaluate the exciton radius rex as

r2ex ¼
Z

r1

0

r2gehðrÞr−2s 2πrdr; ð4Þ

where r1 is the radius of a circle centred on a hole containing
on average one electron. Figure 4(b) shows the pair radius
rex for the condensate. As rs increases, rex converges to the
isolated-exciton limit, which for d=a�0 ¼ 0.4 is rex=a�0 ¼
2.002. The values of kFrex are always less than unity,
indicating pair sizes of the order of, or smaller than, the
interparticle distance, confirming that the superfluidity is
always in the strongly coupled crossover or BEC regimes.
In contrast with the short-range interactions typical

of ultracold fermions and superconductivity in general,

electron-hole superfluidity should be affected by screening
because of the long-range nature of the Coulomb pairing
attraction. The nature and effectiveness of this screening
has been a source of controversy in the past, with
predictions from mean-field calculations ranging from
negligible screening resulting in room-temperature super-
fluidity [10,11,52,53], to full screening by the normal state
which would essentially completely suppress superfluidity
[54]. Reference [55] compared the dramatically different
mean-field predictions for the density dependence of the
condensate fraction with the QMC values of the condensate
fraction for the same system [17]. The conclusion was that
the best mean-field approximation for screening was self-
consistent screening by the superfluid state introduced by
Lozovik [11] and applied in Ref. [12] to double bilayer
graphene. Using a similar argument, Ref. [55] concluded
that the vertex corrections and intralayer correlations in the
superfluid state make relatively small contributions. Our
present results for the superfluid gap, Fig. 2(a), are in good
agreement with Fig. 3 of Ref. [55]. Our results are thus
consistent with and further validate the conclusion
of Ref. [55].
The trends of our QMC results are consistent with the

complete suppression of superfluidity at high densities
predicted in Ref. [12]. After the onset of superfluidity,
rs=a�0 ¼ 1.5, the system is in the weak-coupled BCS
regime, but the condensate fraction rises rapidly and by
rs=a�0 ¼ 2 it reaches c ¼ 0.2. By rs=a�0 ¼ 2 the superfluid
gap has reached ∼EF. Thus the BCS regime, for which
Δ=EF ≪ 1, is restricted to the very small density range
1.5 < rs=a�0 < 2. This confirms the effects of the highly
nontrivial competition between Coulomb screening, which
tends to suppress electron-hole pairing induced by the
interlayer Coulomb attraction, and the opening of a large
superfluid gap, which suppresses the particle-hole proc-
esses near the Fermi surface responsible for screening, thus
severely weakening the screening.
When rs is further increased, the superfluid gap first

increases and then reaches a flat maximum around rs=a�0 ∼
5–6 with a very large value Δ=Ha� ∼ 0.2. The large gap
indicates that the superfluidity is robust with a high
transition temperature. The chemical potential is still
positive at this density, μ=EF ∼ 0.5, the condensate fraction
is ∼0.7, and kmin=kF ∼ 0.5. Thus, the system retains its
fermionic properties with a Fermi surface present but
smeared out by the large gap, Δ=EF ∼ 7.
The BEC superfluid regime is reached at larger

rs=a�0 ∼ 8, where the condensate fraction acquires values
c > 0.8. In this regime μ=EF is large and negative, the ratio
Δ=EF > 10 is very large, the Fermi surface has completely
collapsed, and the average pair size approaches the radius
of an isolated exciton. The electron-hole superfluid can
then be regarded as an ensemble of well-formed electron-
hole dipoles, which are indirect excitons. The excitons will
behave as a two-dimensional bosonic gas with a repulsive
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FIG. 4. VMC and DMC values of (a) c and (b) rex as functions
of rs. The inset in the bottom panel shows rex in excitonic Hartree
units. The dotted lines interpolating the DMC results are intended
as a guide to the eye.
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interaction, with a Kosterlitz-Thouless transition [56]
governing the critical temperature for superfluidity. Thus
in the BEC regime the critical temperature should diminish
with decreasing density.
We can thus conclude that the optimal density for

experimental realization of the electron-hole condensate
is around rs=a�0 ∼ 5, which is deep inside the BCS-BEC
crossover regime with large values of Δ=EF. For BLG
encapsulated in hBN, rs=a�0 ∼ 5 corresponds to a density
of 2 × 1011 cm−2, the maximum gap corresponds to
Δ∼54meV–630K, and the interlayer distance d=a�0¼
0.4 corresponds to 1 nm.
Our QMC results are consistent with a universal behav-

ior of materials in the BCS, BCS-BEC, and BEC regimes
not depending on the details of the microscopic inter-
actions, and thus they point to a very general physics. The
ground state properties and their evolution with coupling
strength appear to be universal for (i) long-range Coulomb
interactions, (ii) contact interactions in fermions [20], and
(iii) spin fluctuations and phonons in iron-based super-
conductors [21,22,33].
Our results confirm that, unlike for fermionic super-

fluids with short-range pairing interactions, the BCS
regime in Coulomb systems with their long-range inter-
actions and screening is restricted to a very small range of
densities. This is due to competition between screening
and the superfluid gap [11,12], with strong screening
suppressing the small-gap BCS regime in Coulomb
systems. At high densities, the onset of superfluidity is
delayed by screening, so that when the onset density is
eventually reached, the pairs are relatively compact, and
the superfluid gap, which rapidly becomes large both in
absolute value and relative to EF, will strongly suppress
screening. Thus the system almost immediately enters the
strong-coupling BCS-BEC crossover regime. For this
reason the superfluidity is likely to be robust against
potential detrimental effects like disorder, density imbal-
ance, and low dimensional fluctuations, and we expect the
largest gaps and highest critical temperatures not to be far
from the onset density.
Supporting research data may be freely accessed by

following the link in Ref. [57].
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Note added in proof.—We have become aware of a recent
experimental report of the observation of electron-hole
condensation in this system [58]. The density range is in
extremely good agreement with our predictions.
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