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Tetragonal CuO (T-CuO) has attracted attention because of its structure similar to that of the cuprates. It
has been recently proposed as a compound whose study can give an end to the long debate about the proper
microscopic modeling for cuprates. In this work, we rigorously derive an effective one-band generalized
t — J model for T-CuO, based on orthogonalized Zhang-Rice singlets, and make an estimative calculation
of its parameters, based on previous ab initio calculations. By means of the self-consistent Born
approximation, we then evaluate the spectral function and the quasiparticle dispersion for a single hole
doped in antiferromagnetically ordered half filled T-CuO. Our predictions show very good agreement with
angle-resolved photoemission spectra and with theoretical multiband results. We conclude that a
generalized t—J model remains the minimal Hamiltonian for a correct description of single-hole

dynamics in cuprates.
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More than three decades after their discovery, high-
temperature superconductors still give rise to many debates.
On the theoretical side, one of the most long-standing and
important discussions is about the proper microscopic
model for describing superconductivity. In this respect
and from the outset, attention was focused on the spectral
function of a single hole doped on the parent half filled
compounds, whose quasiparticle (QP) dispersion relation
is directly measured in angle-resolved photoemission
(ARPES) experiments. Experimental evidence shows that
this doped hole resides on the O 2p,, orbitals [1-3]. For the
CuO, planes that build up the cuprates, Zhang and Rice [4]
proposed that a singlet, called the Zhang-Rice (ZR) singlet,
is formed between the spin of a copper atom and the spin of
the hole residing in a linear combination of four ligand
oxygen orbitals around the copper atom. Integrating out the
oxygen orbitals, a one-band effective model was proposed
in which the effective holes (representing ZR singlets)
reside on the copper atoms and propagate emitting spin
excitations, magnons. In this model, adding two holes as
nearest neighbors in an antiferromagnetic background costs
less energy than if they are added far apart. This is a
simplified view of the pairing glue of magnetic origin [5].

Since the proposal of Zhang and Rice, an unclosed
debate about the validity of one-band effective models has
taken place [6—16]. Several authors sustain that only the
three-band model [17,18] is valid for describing the physics
of the cuprates correctly, where the three bands come from
two O 2p,, orbitals and one Cu 3d 2_ . orbital, not only for
the insulating parent compound at half filling but also for
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many other phases of the rich phase diagram of the cuprates
and related compounds. This issue is of central importance,
since many investigations have been done in one-band
models, and hence their validity is, at least partially,
questioned.

Recently, tetragonal CuO (T-CuO) has been synthesized,
by growing epitaxially CuO planes on a substrate [(001)
SrTiOs] [19]. T-CuO can be considered as two interpen-
etrating CuO, sublattices sharing one oxygen atom and
hence has two degenerate antiferromagnetic ground states,
as shown in Fig. 1. ARPES experiments were performed on
this compound [20], showing substantial intralayer cou-
pling between these two sublattices and a similar dispersion
(with some differences) to that of the cuprate Sr,CuO,Cl,.
This material was addressed in a recent work [15] as a good
candidate to discern whether one-band models, based on
ZR singlets, are valid for describing the physics of CuO
planes or if, instead, three-band models should be used.
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FIG. 1. The two possible magnetic ground states for T-CuO:

Q = (0, x) (left) and Q = (=, 0) (right). The coordinate versors
point in the directions of ¢ and d. Arrows indicate spins at Cu
sites, and circles correspond to the O sites.
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In this Letter, we rigorously derive an effective one-
band model for T-CuO and compare its QP dispersion
with experimental ARPES results and theoretical predic-
tions for the three-band model. Using a procedure based
on previous derivations of generalized one-band effective
Hamiltonians [10], we start from a spin-fermion model
for T-CuO, and we obtain then its effective one-band
model for the ZR singlets. The parameters of the model
were calculated starting from parameters determined by
constrained-density-functional computations for La,CuQO,
[21] and estimating their variations for the T-CuO case.
We find an effective hopping to first nearest neighbors
(NN) between CuO, sublattices and effective hoppings to
first, second, and third NN in the same sublattice,
together with superexchange parameters J (the usual
NN antiferromagnetic one for CuO, planes) and a
ferromagnetic J (NN in T-CuO, belonging to different
CuO, sublattices).

Using this model, we calculate the QP dispersion by
means of the self-consistent Born approximation (SCBA),
a reliable and widely used many-body method. We com-
pare our results with ARPES experiments in T-CuO,
obtaining good qualitative and quantitative agreements.
Our results also recover previous ones from a three-band
calculation, including particular aspects that were claimed
absent in a ZR picture. We then conclude that our method
is correct for obtaining rigorous one-band effective
models and that the one-band model that we have derived
describes correctly the physics of a single doped hole
in T-CuO.

We start from a spin-fermion model (Cu spins and
O holes), obtained by integrating out valence fluctuations
at the Cu sites [6,15,22-24]. With the adequate choice of
phases (Fig. S1 in Ref. [24]), the Hamiltonian reads
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where i (j) labels the Cu (O) sites and i + 6 (j + ) label
the four O atoms nearest to Cu atom i (O atom j). The spin
at the Cu site i (O orbital 2p,, at site i + 6) is denoted as
S; (s;+5)- The signs s, =—1 for y[|& +§ and s, =1 in the
perpendicular direction, X and § being the unit vectors
along the directions of NN Cu atoms in the CuO, planes
(which are second NN in the T-CuO structure). The
parameter t;, » =0.67,, (Ref. [15]). This is essentially the
same Hamiltonian as that considered by Adolphs et al. [15]

(we include virtual fluctuations via Cut?), and its low-
energy physics reproduces that of the three-band
model [23].

Projecting the Hamiltonian over the subspace of
orthogonal ZR singlets, we have derived a one-band
generalized ¢ — J model for T-CuO. All the steps can be
found in Ref. [24]. The one-band effective generalized
t —J Hamiltonian is
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where the subscript k = 0 refers to intersublattice hopping
of NN Cu atoms in the T-CuO structure, while xk = 1, 2, 3
refer to first, second, and third NN within each CuO,
sublattice, respectively. Instead of using arbitrary values for
the parameters, we have calculated them, keeping the states
corresponding to orthogonalized ZR singlets and using
results from constrained-density-functional calculations
[21]. These values are very similar to those corresponding
to the model used by Adolphs e al. [15], as shown in
Table 3 in Ref. [24]. We have checked that the results for
both sets are quite similar. To simplify the discussion, we
present here only the results for the latter. The parameters in
meVare t, = —184, 1, =369, 1, = —11,1; = 65,J = 150,
and J' = 0. This effective model was proposed previously
by Moser et al. [20]. Here we provide its justification and
determine its parameters.

The spectral functions were calculated by means of the
SCBA [36-39], a semianalytic method that has been
proven to compare very well with exact diagonalization
(ED) results on finite clusters in different systems
[36,37,39—-41]. It is one of the more reliable and checked
methods up to date to calculate the hole Green’s function
and, in particular, its QP dispersion relation. However,
some care is needed to map the QP weight between
different models [37]. In order to do such calculation,
we follow standard procedures [36]. On one hand, the
magnetic dispersion relation is obtained by treating the
magnetic part of the Hamiltonian at the linear spin-wave
level, since the system we study has long-range order, and
hence its magnetic excitations are semiclassical magnons.
On the other hand, the electron creation and annihilation
operators in the hopping terms are mapped into holons of a
slave-fermion representation (details in Ref. [24]). Within
SCBA, we arrive to an effective Hamiltonian:
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ex = 2tycos(k - ¢) + 4t, cos(ak,) cos(ak,)
+ 2t3[cos(2ak,) + cos(2ak,)],

wWx = \/Ai-“-Blz(,

Myq = 2to{cos [(k —q) - ¢]ug — cos(k - ¢)vq}
+ 2l‘l [”qé’(k - (]) - Uqé’(k)]v (4)

where €y is the bare hole dispersion (with no coupling
to magnons), @y is the magnon dispersion relation, with
Ay =2J —J'cos(c- k) and By = (J/4)}, cos(v; - k) —
(J'/2) cos(d - k), and My, is the vertex that couples the
hole with magnons. Here ((k) = cos(ak,) + cos(ak,),
c=b(X+§),andd =b(—%X +§), a = 2D being the dis-
tance between Cu atoms in the CuO, planes. The vectors ¢
and d are indicated in Fig. 1. We now compare our results
with ARPES experiments performed on T-CuO, specifi-
cally with those in Figs. 2 and 3 in Ref. [20]. For that
purpose, we adopt in Figs. 2 and 3 an electron picture. In
Fig. 2, we show the QP dispersion derived from our SCBA
calculation. This should be compared with the blue points
in Fig. 2 in Ref. [20] and also with the white points in the
same figure, corresponding to exact diagonalization of a
one-band Hubbard model in 20 sites. In our calculation, a
broadening equivalent to 20 meV [controlled by means of
the parameter 6 in Eq. (4)], similar to the experimental
resolution (30 meV [20]), was applied to the spectral
functions. Taking into account the two possible magnetic
ground states for T-CuO, we obtain the two QP dispersions
shown in Fig. 2. It can be observed that the dispersion
corresponding to Q = (7, 0) recovers all the main features
of the experimental dispersion, and hence our results can
distinguish between the possible degenerate magnetic
orders in the experiment. In particular, we recover the
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FIG. 2. Quasiparticle dispersion relation (relative to I') along
the path marked in the inset, the same as the one measured in the
ARPES experiment in Ref. [20]. A broadening equivalent to
20 meV was applied to the spectral functions (see the text).

asymmetry between the points I' and X', B and B’, and A
and A’. Moreover, we obtain E(A) — E(A") = 128 meV,
E(B)—E(B') =64 meV, and E(I') — E(M) = 10 meV,
while the experimentally measured energy differences
are 140, 60, and 180 meV, respectively [20]. The agreement
is very good, except in the last case. This discrepancy is
quite likely due to missing quasiparticle peaks with small
weight in the experiment (see also Fig. S4 in Ref. [24]). In
that sense, we note that the I" point (and points located in its
vicinity) shows a very broad spectrum (see Figs. 2 and 3 in
Ref. [20]), and hence there may be some uncertainty in the
determination of the QP energy which could explain this
discrepancy. The bandwidth of the QP dispersion, along
this path, taken from our SCBA calculation is 0.3 eV, very
similar to the bandwidth of the experimental dispersion,
approximately 0.4 eV. We have also calculated an intensity
curve along the same path as in the experiment, to compare
with the ARPES intensities (Fig. 2 in Ref. [20]). We show
only the intensity corresponding to Q = (z,0), since for
this order our QP dispersion recovers the experimental one.
For this calculation, a broadening equivalent to 170 meV
was applied, in order to make the intensity plot softer.
The results are shown in Fig. 3. The similarities with the
experimental curve follow the trends explained in the
previous paragraph. It is worth mentioning that, on one
hand, at some points in the experimental curve the effect of
the ARPES matrix elements is very strong, especially
around the X/M’ point, where there is no intensity at all
in the ARPES data, and, on the other hand, a $ band seems
to merge with the QP band, especially at the X /M’ point but
also possibly around the M point. So at these two points, in
particular, around the X/M’ points, the comparison of our
calculation with the experiment is obscured by these
experimental facts. Finally, it is worth mentioning that,
in the case that the illuminated area in the ARPES
experiments contains domains with both magnetic Q =
(7,0) and Q = (0, x) vectors (as mentioned above, they are
degenerate), the QP dispersion should be a superposition of
both curves shown in Fig. 2, which does not seem to be
what is observed in the experiment [42]. The intensity

Energy( eV)

r B X B M A XM A r

FIG. 3. SCBA intensity map along the same path as in Fig. 2.
The assumed magnetic order is (r,0).
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FIG. 4. SCBA hole dispersion relation in units of J (0.15 eV) along the path marked in the inset. Black dashed line: The result
corresponding to 7y = 0 (decoupled sublattices). Blue full line: The full result with 7y = —184 meV.

curve in Fig. 3 should also change accordingly, but in our
case we have checked that the only noticeable changes
occur around the X /M’ point, at which nevertheless there is
no intensity in the ARPES data corresponding to the band
ascribed to ZR singlets [20].

In general, the spectral function corresponding to a
definite momentum contains, in the hole picture, a low-
energy pole, whose energy defines the QP energy, and a
high-energy part which is related to the incoherent move-
ment of the hole, having its origin in multimagnon
processes [40]. When the quasiparticle weight is signifi-
cant, the brighter areas in Fig. 3 will coincide with the
energy of the QP in Fig. 2. On the contrary, when the
incoherent part of the spectral function takes most of
the spectral weight, this will not happen. Points like I"
and M have a low QP weight, while on the contrary for the
lines B — B’, A’ — A the QP weight is relatively high (some
spectral functions can be seen in Fig. S4 in Ref. [24]).

It was claimed previously that the one-hole dispersion
in T-CuO requires a three-band model to be described
correctly [15]. The evidence presented came from a
variational calculation on the spin-fermion model
Eq. (1), whose results a one-band model supposedly cannot
capture. In particular, it was shown that the minimum that
the QP dispersion has at (z/2,7z/2) for CuO, (or, equiv-
alently in T-CuO, if the two CuO, sublattices are dis-
connected), shifts along the diagonal I" = (0,0) — (xz, x),
towards the I' point, when the two CuO, sublattices are
connected to form T-CuO. This happens for Q = (0, 7).
Alternatively, the shift is along the antidiagonal towards
X/M for Q = (x,0). This is what we have shown in Fig. 2.
These results are in line with previous investigations for
CuO, planes [16], where it was claimed that a one-band
t—1t — 1" —J model has a minimum at (z/2,7/2) that
along the diagonal of the Brillouin zone is controlled by
spin fluctuations, while in the three-band model the
variational method used in Ref. [16] does not need to
include spin fluctuations in order to have an absolute
minimum at (z/2,7/2).

Using the generalized ¢ — J model [Eq. (2)] derived from
H s [Eq. (1)], we now calculate the QP dispersion along the
same path as in Ref. [15] and with the corresponding
parameters (set B of Table III in Ref. [24]), and Q = (0, x).

Results are shown in Fig. 4, plotted adopting the hole’s
picture. As before, a broadening equivalent to 20 meV was
applied to the spectral functions, but the results do not
depend significantly on this (unless broadenings an order of
magnitude larger are applied). It is clear that, when both
sublattices are connected through the 7, term, the QP
dispersion relation derived from H; is recovered. In
particular, we obtain a shift of the QP minimum along
the diagonal towards the I" point, although this shift is lower
(about half) in magnitude than the one obtained with the
three-band model. This difference might be due to the
different theoretical treatments used by Adolphs et al. to
solve H s [Eq. (1)] and by us to solve H,; [Eq. (2)]. In this
respect, we remark it is very difficult to decide which
theoretical treatment gives more accurate results from
quantitative differences of this kind, since on one hand
both compare very well with ED results in finite clusters,
while on the other hand no experiment so far could even
measure this shift in the QP dispersion relation. We also
remark that, by varying #,, the QP dispersion relation is not
changed apart from a constant shift (in agreement with
previous results [16]). This is important, since ¢, is the
parameter obtained with less accuracy.

The shift in our model is not caused by the coupling
of the hole with spin fluctuations, which in fact
conspires against it. This can be seen from the effective
Hamiltonian Eq. (4), since the bare-hole dispersion (i.e.,
with no coupling to magnons) €, = 2fycos(k - ¢) +
4t, cos(ak,) cos(ak,) + 2t3[cos(2ak,) + cos(2ak,)| has a
minimum, along the diagonal k, = k,, that shifts from
(z/2,7/2) towards the I point when the intersublattice
hopping 7, is turned on. For example, the bare hole
minimum is at (0.4z,0.4x) for the parameter set we used.
However, when the interaction of the bare hole with spin
fluctuations (magnons) is taken into account through the
vertex My,, the minimum shifts back towards (z/2,7/2).
The shift obtained is about 10% of the distance between the
A and I' points. Note that the SCBA contains an infinite
number of spin fluctuations, while only a few are included
in the treatment in Ref. [15]. In any case, we have shown
that a ZR one-band model can explain a shift in the QP
minimum at (z/2, z/2) and that the interaction of the bare
hole with spin fluctuations is not responsible for this shift.
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Finally, the QP bandwidth along this path is, in our one-
band model, of the order of 3/, slightly less than the result
from the variational method in the three-band model
Eq. (1) [15].

Overall, we conclude that our effective generalized one-
band model, rigorously derived from orthogonalized ZR
singlets, and without free parameters, not only does recover
characteristics of the three-band model, but also its pre-
dictions agree qualitatively and quantitatively with ARPES
experiments in tetragonal CuQ.
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