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A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in
ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach,
covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin
precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced
due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin
precession effects displays a complex spatial dependence that can be exploited to generate torques and
nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers,
as opposed to the conventional understanding of spin-orbit mediated torques.
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Introduction.—The exploitation of spin-orbit coupling
(SOC) effects to probe and control the magnetization in
nanodevices has been extensively studied, uncovering
many physical phenomena, such as the anomalous Hall
effect [1], the spin Hall effect [2], tunneling anisotropic
magnetoresistance [3], electrically controlled perpendicular
magnetic anisotropy [4], and relativistic spin torques [5–7].
Relativistic spin torques observed in multilayers compris-
ing ferromagnets and normal metals display both spin-orbit
torques induced by the interfacial inverse spin-galvanic
effect [6] and spin-transfer torques associated with the spin
Hall effect in an adjacent nonmagnetic layer [7]. Spin-orbit
torques generated in a single ferromagnetic layer are of
great importance in enabling electrical control of the
magnetization without the use of external polarizers, and
they offer many promising advantages compared to spin-
transfer torques, such as high scalability and stability. Thus,
finding novel routes to excite magnetization dynamics by
means of spin-orbit torques is essential for realizing high-
performance spintronic devices.
Meanwhile, new ways to generate spin accumulation are

also of great interest. Recently, a new mechanism referred
to as spin swapping, which converts a primary spin current
into a secondary spin current with interchanged spin and
flow directions, was proposed to exist in normal metals and
semiconductors in the presence of spin-orbit coupled
impurities [8]. However, whether spin swapping in ferro-
magnets can produce a measurable effect remains an open
question that has not yet been addressed. On the one hand,
the exchange magnetic field present in ferromagnets tends
to destroy the induced spin accumulation. On the other

hand, SOC not only acts constructively in generating spin
accumulation, it also leads to spin-memory loss [9].
Overall, the possibility to employ these effects in ferro-
magnets strongly depends on the transport regime as a
function of many parameters describing a given system.
In this Letter, we explore the nature of the extrinsic spin

Hall and spin swapping effects in diffusive ferromagnets and
demonstrate that these effects can offer potential advantages,
in contrast to noncentrosymmetric magnetic multilayers
involving heavy metals. To this end, we develop a set of
coupled spin-charge diffusive equations by using the non-
equilibrium Green’s function formalism and taking into
account scattering off the impurity induced SOC potential.
Based on these equations, we proceed to study the interplay
between spin-orbital and spin precession effects that can be
used to demonstrate current-driven manipulation of the
magnetization in centrosymmetric magnets.
Derivation of the coupled spin-charge drift-diffusion

equation.—We consider a single ferromagnetic layer in the
standard s-d model [10] defined as Ĥ ¼ ðp̂2=2mÞσ̂0 þ
Jσ̂ ·mþ Ĥimp, where m is the effective electron’s mass,
p̂ is the momentum operator, J is the exchange coupling, σ̂0
is the identity matrix, σ̂ is the Pauli matrix vector, and m is
the spatial magnetization profile. Here, the third term stands
for the impurity potential given by randomly distributed N
impurities Rj, Ĥimp ¼

P
N
j fVðr − RjÞσ̂0 þ ½ξSO=ðℏk2FÞ�σ̂ ·

½∇Vðr − RjÞ × p̂�g, where Vðr − RjÞ ¼ viδðr − RjÞ is the
on-site impurity potential, ξSO is the SOC parameter
(defined as a dimensionless quantity), and kF is the
Fermi wave vector. In the Keldysh formalism for an
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interacting system driven out of equilibrium, the Dyson
equation for the nonequilibrium Green’s function ĜK is
written as

½ĜR�−1∘ĜK − ĜK∘½ĜA�−1 ¼ Σ̂K∘ĜA − ĜR∘Σ̂K; ð1Þ

where Ĝi ≡ Ĝiðr; t; r0; t0Þ and Σ̂i ≡ Σ̂iðr; t; r0; t0Þ with
i ¼ K, R, A are the real space, real time Keldysh, retarded,
and advanced Green’s functions and self-energies, respecti-
vely, and ½ĜRðAÞ�−1¼½Ĝ0�−1−Σ̂RðAÞ, where Ĝ−1

0 ¼iℏ∂t−Ĥ
is a noninteracting Green’s function for the system
without impurities [11,12]. Having applied the Wigner
transformation ĜKðr; t; r0; t0Þ ¼ R ðdE=2πÞ½dk=ð2πÞ3�
eik·ðr−r0Þ−iðE=ℏÞðt−t0ÞĝKk;EðR; TÞ, with R ¼ ðrþ r0Þ=2 and
T ¼ ðtþ t0Þ=2, we employ the so-called gradient approxi-
mation to linearize convolutions (the open circles) in
the Dyson equation (1) and obtain the following quantum
kinetic equation for the distribution function ĝk ¼
i
R ðdE=2πÞĝKk;EðR; TÞ:

ℏ∂Tĝk − i½ĝk; Jσ̂ ·m� þ ℏ2

m
ðk · ∇RÞĝk ¼

Z
dE
2π

C; ð2Þ

where C ¼ ðΣ̂KĜA − ĜRΣ̂KÞ þ ðΣ̂RĝK − ĝKΣ̂AÞ is the col-
lision integral that accounts for the scattering and relaxation
events, respectively. Scattering off the impurity potential in
the right-hand side of Eq. (2) is considered up to third order

by impurity averaging over disorder with concentration ni
so that the spin-dependent momentum and spin-flip relax-
ations and the side-jump [13], spin swapping, and skew-
scattering [14] processes are properly taken into account.
In the diffusive limit, where the mean free path is much
smaller than the size of the system, one can partition
the distribution function ĝk ¼ σ̂0 − 2ĥk into the isotropic
charge μc, spin μ, and anisotropic ĵ components, ĥk ¼
μcσ̂0 þ μ · σ̂ þ ĵ · ǩ, where ǩ ¼ k=jkj [15]. First, integrating
Eq. (2) multiplied by ǩ over the Brillouin zone gives us the
corresponding expression for ĵ≡ ĵðμc; μÞ. Second, integrat-
ing Eq. (2) itself leads to the generalized continuity
equation for the charge μc and spin μ densities, so their
time dependence is given as a divergence of the charge jC

and spin JSj (its jth spin component) currents, respectively.
We refer the reader to Ref. [16] for more details concerning
the derivation. Finally, in the weak exchange coupling limit
(J ≪ εF, where εF is the Fermi energy), the resulting drift-
diffusion equations up to leading order in the exchange
interaction and SOC have the following form:

∂Tμc ¼ D∇2½μc þ βμ ·m� ¼ −∇ · jC; ð3Þ

∂Tμ ¼ −∇ · JS þ 1

τL
m × μþ 1

τϕ
m × ðm × μÞ − 1

τsf
μ; ð4Þ

jC=D ¼ j̃C=Dþ ∇ ×

�
αsjð2μ − βμcmÞ þ αskðμ − βμcmÞ þ

�
αsj

τ0
τL

þ αsk
τ0
τL

− αswβ

�
m × μ

�
; ð5Þ

JSj =D ¼ J̃Sj =Dþ ∇ ×
�
αsjejð2μc − βμ ·mÞ þ αskejðμc − βμ ·mÞ − αswej × ðμ − βμcmÞ þ τ0

τL
ðαsj þ αskÞðej ×mÞμc

þ
�
αsjβ þ αskβ − αsw

τ0
τL

�
ðej ×mÞ × μ −

�
αsw

τ0
τL

þ αsjβ þ αskβ

�
ej × ðm × μÞ

�
; ð6Þ

where j̃C¼−D∇ðμcþβm ·μÞ and J̃Sj =D¼−∇ðμjþ
βμcmjÞþðτ0=τLÞ∇ðm×μÞjþðτ0=τϕÞ∇½m×ðm×μÞ�j are
the charge and spin currents in the absence of SOC,
respectively; β ¼ ðJ=2εFÞ is the polarization factor; αsw ¼
½ð2ξSOÞ=3�, αsj ¼ ½ξSO=ðlFkFÞ�, and αsk ¼ ½ðvimkFξSOÞ=
ð3πℏ2Þ� are the dimensionless spin swapping, side-jump,
and skew-scattering coefficients, respectively; D ¼
½ðτ0v2FÞ=3� is the diffusion coefficient, vF is the Fermi
velocity, and lF ¼ τ0vF is the mean free path; ej is the unit
vector along the j axis. Here, ð1=τ0Þ ¼ ½ð2πv2i niD0Þ=ℏ� is
the spin-independent relaxation time, where D0 ¼
½ðmkFÞ=ð2π2ℏ2Þ� is the spin-independent density of states,
ð1=τsfÞ ¼ 8

9
ðξ2SO=τ0Þ is the spin-flip relaxation time,

ð1=τLÞ ¼ ð2J=ℏÞ is the spin precession time around the
magnetization, known as the Larmor precession time, and
ð1=τϕÞ ¼ ½ð4J2τ0Þ=ℏ2� refers to the spin dephasing term.
The set of drift-diffusion equations (3)–(6) is the central
result of this Letter. On the one hand, in the absence of
SOC, our approach is in line with the generalized drift-
diffusion theory [17], which captures the main features of
the transverse spin transport in ferromagnets, such as the
Larmor precession and spin dephasing terms. On the other
hand, in the case of normal metals (β → 0, τL → ∞,
τϕ → ∞), our equations are in agreement with Shen et al.
[18], while some other works fail to include the correct
symmetry of the spin swapping term [16,19–21]. In the
presence of both the exchange interaction and the extrinsic
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SOC, the anomalous Hall effect is present in Eq. (5) (the
second and third terms) from both the side-jump and skew-
scattering processes [22], while spin polarization and spin
precession give rise to additional terms to the anomalous
charge and spin currents in Eqs. (5) and (6). Overall, the
resulting charge and spin accumulation profiles appear to
be much more complex than for normal metals. In magnetic
systems with SOC, the competition between these effects is
governed by the ratio of the corresponding characteristic
lengths: spin precession, spin dephasing, and spin diffusion
lengths. In ferromagnets with a strong exchange coupling,
where the spin dephasing length is shorter than the spin-flip
relaxation, the spin Hall and spin swapping effects are
expected to vanish far from the interface, as the strong
exchange field tends to destroy induced spin currents.
Consequently, any transverse spin component will even-
tually align or antialign with the magnetization [23]. By
contrast, in the weak exchange coupling limit (J ≪ εF), the
spin dephasing length is larger or comparable to the spin-
flip relaxation, and these coupled effects can become
prominent. Finally, it is worth pointing out that the resulting
equations can be extended to include electromagnetic fields
and gradient corrections in the case of a nonuniform
magnetization profile [24]. While we believe that the latter
are of less importance in smoothly varying magnetic
textures, electric fields must be treated more cautiously.
For example, it was argued that in normal metals the spin
Hall effect is enhanced and spin swapping is almost
compensated for when taking into account an electric-field
induced spin-orbit coupling [18]. Even though in diffusive
ferromagnets these effects may be more involved, we
expect our results to hold qualitatively in the presence of
electric fields.

Spin accumulation profile.—To study the interplay of the
effects in question, the drift-diffusion equations (3)–(6) can
be solved numerically by putting m along the y axis and
imposing adequate boundary conditions. Namely, we put
JSj ¼ 0 at the boundary to suppress interfacial spin-flip
processes and let the spin accumulation build up at the
edges, while the charge densities at the edges in the
propagation direction are μcL ¼ k2F=2π and μcR ¼ 0 to
enable current flow though the device. The results calcu-
lated for the rectangular geometry are shown in Fig. 1. In
the absence of SOC, the spin current density JSxy ∼∇xμy is
induced in the magnetic layer and, due to Larmor pre-
cession, the spin accumulation μy is localized at the normal
metal-ferromagnet interfaces along the transport direction
[Fig. 1(a)], in agreement with the Valet-Fert theory [25].
When the impurity induced SOC is present, the transverse
spin accumulation is expected to build up at the lateral
edges. First off, let us analyze additional contributions to
the spin swapping term. From Eq. (6), the “spin swapping”
spin current has the following form:

Jswij =D ¼ αswð∇jμi − δij∇kμkÞ þ αswβðδijmk∇k −mi∇jÞμc
þ
�
αsj

τ0
τL

þ αsk
τ0
τL

�
ðδijmk∇k −mi∇jÞμc; ð7Þ

where summation over repeated indexes is implied. As
seen, the resulting current meets symmetry requirements,
Jswij ∼ J̃Sji − δijJ̃Skk, where J̃Sji is the primary spin current
[8,16]. In normal metals, owing to the spin swapping
mechanism, J̃Sji ∼∇jμi gives rise to the secondary spin

FIG. 1. Spin accumulation profiles μx, μy, and μz as calculated for the rectangular ferromagnetic geometry of 100 × 50 nm2 (the light
area) with a normal metal at the boundaries (the dark area). (a) μy in the case of Larmor precession only. (b) μx and μz when only the spin
swapping and Larmor precession terms are considered. (c) μx and μz when only the spin Hall effect and Larmor precession are
considered. (d) The full drift-diffusion equations. Here, the spin current polarized along the y axis is flowing along the x axis,
εF ¼ 0.7 eV, J ¼ 0.02 eV, and ξSO ¼ 0.3. The spin diffusion length is lsf ¼

ffiffiffiffiffiffiffiffiffi
Dτsf

p ¼ 5 nm, the Larmor precession length is
lL ¼ ffiffiffiffiffiffiffiffiffi

DτL
p ¼ 2.6 nm, the spin dephasing length is lϕ ¼ ffiffiffiffiffiffiffiffiffi

Dτϕ
p ¼ 4.8 nm, the mean free path is lF ¼ τ0vF ¼ 2.5 nm, the Fermi

velocity is vF ¼ 5 × 105 m=s, and the Fermi wave vector is kF ¼ 4.3 nm−1. Grey and yellow spheres denote nonpolarized and spin-
polarized charge currents, while red and blue spheres denote the spin-up and spin-down components, respectively.
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current Jswij ∼ αswð∇jμi − δij∇kμkÞ, and the generated spin
accumulation μi decays over a length scale given by the
spin-flip relaxation length and survives only close to the
interface [20]. However, in ferromagnets an additional
nonvanishing spin accumulation ∼αswβ builds up due to
spin polarization and develops smoothly at the lateral edges
[Fig. 1(b), the x component]. Interestingly, there is an extra
term coming from the spin Hall effect and the precessional
motion [the third term in Eq. (7)], which also exhibits the
symmetry of the spin swapping current, even though it is
not actually attributed to the spin swapping effect itself. The
rest of the effects are related to Larmor precession. For
example, let us consider a toy model where m points along
the y axis and the spin Hall effect, spin polarization, and
higher-order terms to the precessional motion are dis-
carded, so the spin current density in Eq. (6) is reduced to

JSyx
D

∼ −∇yμx −
τ0
τL

∇yμz þ αsw∇xμy; ð8Þ

JSyz
D

∼ −∇yμz þ
τ0
τL

∇yμx: ð9Þ

As one can see, Eq. (8) features the spin swapping effect.
However, owing to Larmor precession, the second term
in Eq. (9) couples JSyx to JSyz and builds up μz, which is
eventually related to the third term in Eq. (8) [Fig. 1(b), the
z component]. Similar results are obtained if we neglect
spin swapping and focus on the spin Hall effect instead,
where the spin accumulations do not vanish far from the
interfaces [Fig. 1(c)]. If we solve our toy models separately
for the spin swapping and side-jump terms, the following
relation holds for the maxima of the corresponding spin
accumulations:

μx
μz

∝
αswβ

αsj
¼ 1

3
lFkFβ: ð10Þ

It follows that spin swapping is about 1 order of magnitude
smaller than the spin Hall effect (as also seen in Fig. 1).
While spin swapping scales with the momentum memory
loss and is more pronounced when the mean free path is
long enough [21], in diffusive ferromagnets it never
becomes dominant over the spin Hall effect.
Current-driven magnetization switching.—We propose a

possible way to exploit the spin Hall and spin swapping
effects to reversibly control the magnetization in centro-
symmetric ferromagnets that can be realized even in the
absence of adjacent nonmagnetic layers. Normally, spin-
orbit torques are observed in ferromagnetic films lacking
inversion symmetry through the Rashba effect, which is
essentially inherent to noncentrosymmetric structures [6].
However, geometry itself can play an important role
building up distorted spin accumulation profiles and giving
rise to nonzero local spin-orbit torques. For example, let us

consider a centrosymmetric diamond-shaped geometry.
The resulting spin accumulation presented in Fig. 2 turns
out to be highly asymmetric (while the net spin accumu-
lation is zero) and peaks at the opposite edges that can be
used to nucleate reversed magnetic domains. Once
nucleated at the corners, the flowing current can either
expand or shrink the reversed magnetic domain by current-
driven domain wall motion, as shown in the top panels of
Fig. 2. A similar scenario in controlling the magnetization
(albeit without considering the spin Hall or spin swapping
mechanisms) was studied in Ref. [26].
Conclusion.—We derived a complete set of drift-diffusion

equations for the coupled charge and spin transport in
diffusive ferromagnets in the presence of extrinsic SOC.
While combining major effects, such as the spin and inverse
spin Hall effects, anomalous Hall effect and spin swapping,
these equations reveal some intriguing new features. In
particular, we showed that in ferromagnets the resulting spin
accumulation exhibits a complex spatial profile, where the
spin swapping effect is enhanced due to spin polarization
and spin precession gives rise to additional contributions
to the anomalous charge and spin currents. These effects can
be employed to generate spin-orbit mediated torques and
reversibly control the magnetization in centrosymmetric
structures. Our results call for experimental approbation in
current-driven magnetization dynamics, where suitable
materials may include magnetic alloys with heavy impu-
rities, such as Co/Pt, Fe/Au [27], and CuMn/Pt [28].
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