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Unlike random potentials, quasiperiodic modulation can induce localization-delocalization transitions in
one dimension. In this Letter, we analyze the implications of this for symmetry breaking in the
quasiperiodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong
modulation induces new ferromagnetic and paramagnetic phases which are fully localized and gapless.
The quasiperiodic potential and localized excitations lead to quantum criticality that is intermediate to that
of the clean and randomly disordered models with exponents of v = 17 (exact) and z ~ 1.9, A, ~ 0.16, and
A, =0.63 (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by

logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient w
controls the universality class of the quasiperiodic transition and show its stability to smooth perturbations

that preserve the quasiperiodic structure of the model.
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Sufficiently strong quasiperiodic modulation can drive a
localization transition in one-dimensional wires, as was
first shown by Azbel, Aubry, and André [1-4]. Insofar as
the unmodulated wire is described by a critical Dirac
theory, this suggests that strong modulation ought to be
able to localize other quantum critical points. On the other
hand, if the critical point mediates the development of long-
range order, it must have an extended mode at zero energy.
At the quantum Ising transition in the presence of disorder,
this tension gives rise to infinite randomness physics
[5-13]. In this Letter, we show that sufficiently strong
smooth quasiperiodic modulation drives the quantum Ising
transition into a new quasiperiodic (QP) Ising universality
class. The properties of this universality class are inter-
mediate between those of the clean and infinite randomness
cases and are robust to smooth perturbations that preserve
the QP structure.

The discovery and growth of quasicrystals [14-16]
motivated the study of critical systems modulated by
discrete quasiperiodic substitution sequences [17-25]
including the quantum Ising chain [26—42]. However, recent
optical lattice experiments naturally realize smooth quasi-
periodic modulation [43—-47]. While such modulation has
been investigated in related models [1-4,48-63], Luck’s
analysis [34] of wandering showed smooth QP modulation
to be perturbatively irrelevant at the quantum Ising tran-
sition. This deterred the further study of the strongly
modulated regime, whose physics we here uncover.

The generic QP transverse field Ising model (TFIM) in
one dimension has the Hamiltonian

1
H==2% JQj)sjoi, +T(Qh)e5. (1)
J
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where J(0) and I'(0) are smooth 2z-periodic functions. The
modulation is quasiperiodic if the wavelength 2z/Q is an
irrational multiple of the lattice length a = 1. Our general
results apply to a large class of irrational wave vectors (see
Supplemental Material [64]); numerical results use the
golden mean Q/27 = 7 = (1 4 1/5)/2. The QP model is
best understood as the limit of a sequence of commensurate
models with wave vectors Q = 2zp/q, for coprime
integers p, g such that p/g — Q/2x [65]. The period ¢
is then the finite length scale which controls scaling
behavior.

Using the Jordan Wigner transformation, Eq. (1) maps
on to a free Majorana chain [66]:

i ) _
H= EZJ(QJ)}’szYszrz +T(QN)r2j72j41>  (2)
J

where y; are Majorana fermion operators (for conventions
and details, see Ref. [67]). For an open chain in the Ising
ordered phase, there are exponentially localized zero modes
bound to the system edges. The zero mode wave functions
at the left edge is

iz °‘H

i<j

I'(Qi)
J(Qi)

= exp (Zé(Qi)), (3)

i<j

where 5(Qi) = log [['(Qi)/J(Qi)| is the local reduced
coupling. The equation [6(Qi)] = 0 determines the phase
boundary, where [-] denotes spatial averaging. For QP
modulation, the phase boundaries are independent of Q, as
the spatial average |-] reduces to a phase average [],.

The couplings in the simplest QP TFIM arise from a
single tone:
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FIG. 1. Phase diagram. The hatched region defines the weakly
modulated regime with no weak coupling [J(Qi), I'(Qi) > 0Vi].
The usual gapped ferromagnetic (blue) and paramagnetic (green)
phases appear in this regime, separated by a continuous transition
in the clean Ising class (segment AB). At stronger modulation, we
find two new modulated gapless phases: the QP-PM (yellow) and
the QP-FM (red). The continuous transitions out of these phases
(double and dashed lines) are in the new QP Ising class.

J(Qi) =T +Ajcos (Q(i +1/2) + ¢).
[(Qi) =T + Arcos(Qi + ¢ + A), 4)

where the phases ¢ and A shift the couplings with respect
to the lattice. We highlight an interesting slice of the phase
diagram in Fig. 1, where J = I. There are four phases. The
usual gapped Ising PM and FM phases arise in the weakly
modulated regime (J = I > A, Ap) at the top of the figure.
Two new phases appear at strong modulation, when the
couplings take both positive and negative signs: a QP-FM
with modulated ferro- and antiferromagnetic correlations
and a QP-PM with modulated transverse magnetization.

The two QP phases are gapless with localized excitations
at all energies. Heuristically, this is a consequence of weak
couplings (of the order of 1/¢) which occur when Qi in
Eq. (4) samples near the zeros of J(0) or I'(6). The weak
couplings nearly cut the chain which localizes excitations
on either side. In turn, excitations localized on the weak
links have an arbitrarily low energy as ¢ — oo. We note that
the gapless excitations are not associated with rare regions,
unlike in the Griffiths-McCoy phase of the disordered Ising
chain [5,6,68].

In this Letter, we focus on the phase boundary A; = Ar,
segment ABC in Fig. 1 (while the broader phase diagram is
studied in Ref. [69]). All of the points on this line are Ising
self-dual and accordingly critical. QP modulation is per-
turbatively irrelevant at the clean Ising transition [34]. Our
numerics (not shown) confirm that all critical exponents in
the weak modulation regime (segment AB, Fig. 1) are
consistent with clean universality. The difference between
the unmodulated model and the weakly modulated model
becomes apparent only at a high energy: Figure 2 shows
that the low-energy excitations are extended (red) up to a
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FIG. 2. Localization properties of the excitation spectrum on
line ABC. The low-energy excitations on the segment AB are
extended (red) up to a finite energy cutoff A, above which they
are localized (blue). The cutoff A vanishes at the multicritical
point B so that all finite energy excitations are localized on the
segment BC. The color quantifies the scaling of the inverse
participation ratio I = >_;|y;|* ~¢~% a =0 (1) for localized
(extended) states. Parameters: ¢ = 233, A =42x/233, and

¢ =2

finite cutoff energy A, above which they become localized
(blue). This mobility edge collapses (A — 0) at the multi-
critical point B. On the segment BC, all finite energy
excitations are localized, consistent with the localization of
the adjacent QP-PM and QP-FM phases. This is our first
qualitative indication that the critical properties of the QP
and clean transitions are quite different.

Before turning to the detailed properties of the QP Ising
transition, we briefly review single-parameter scaling.
At clean critical points, coarse-grained observables are
scale-free [70]. Single-parameter scaling posits that a single
length scale and corresponding timescale diverge at the
transition:

E~fo™ L~ E (5)

where v and z are the correlation length and dynamical
critical exponents, respectively. These control the long-
distance and long-time correlations in the vicinity of the
critical point. For example,

(o (1)e,, ()] ~ M%Agcws, ye), ()

where A, is a scaling dimension and C a scaling function.
These are both part of the universal data of the critical point.
It is well known that the scaling ansatz holds at the clean
Ising transition.

In the disordered and QP transitions, the scaling ansatz
needs to be refined. The spatially averaged correlation
functions satisfy scaling in the form of Eq. (6) with a single
mean correlation length £&. However, the typical correlation
functions may decay on a shorter, but still divergent, length
scale &, ~ [6]»» < &. Fisher [10] first emphasized this in
the disordered case, where Vigp = 1 while v = 2. In the QP
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case, we will find a much weaker logarithmic separation
between &, and ¢.

An additional wrinkle for the disordered and QP Ising
transitions is that they separate phases in which all
excitations are localized. The localization length &, is a
function of energy e and deviation [6] which must diverge
as [6],e = 0. By scaling, we can compute z from the
energy dependence of &, and v from its [6] dependence.
Henceforth, we drop the subscript from &, as it coincides
with & where they are both defined.

We now turn to the analytic and numerical computation
of the critical properties of the QP Ising transition.

Typical correlations.—We begin with the exponent that
controls the decay of the zero energy wave function
[Eq. (3)] across a region of size £-

0
Ya(i+e)
0
2i

i+£-1

= > 8(0)). (7)

=i

S,(i) =log

As the excitation mode with the longest localization length,
this controls the decay of long-range spin-spin and fermion-
fermion correlations. The typical correlation length follows
immediately from evaluating the typical exponent control-
ling decay: [S;| = £[6] ~ £ /&, From Eq. (5), this implies
Vyp = 1.

Mean correlations.—The spatial modulation induces
fluctuation in the exponent S,(i), which are characterized
by the scale-dependent variance (“‘wandering”):

o*(S,) = [S7] — [S.]*. (8)

If the wandering o > |[S/]|, then the system has a density of
regions of size ¢ in which it is locally in the opposite phase.
Thus, the spatially averaged correlations at this scale cannot
determine the global phase; this generalizes the Harris-
Luck instability argument [71,72] to the strong modulation
regime. Furthermore, o(S;) ~|[[S¢]| defines the mean
correlation length £ above which the global phase is
determined. As [6] — 0, & diverges faster than &, if the
wandering grows with /.

For disordered chains, the exponent S, undergoes a
random walk so that ¢ ~ \/Z In the QP chain, the long-
range correlations of the spatial modulation produce a more
complicated nonmonotonic wandering (see Supplemental
Material [64]). In particular, there are exponentially sep-
arated special lengths £ (the convergents of Q/2x) at which
o is anomalously small. Nevertheless, for typical large 7,
the wandering o2 is very close to its Cesaro average:

1 < 5 c
?ZU (Sp) ~
=1

wlog?

it 7(6)]. |I0(9)] > 0, o

otherwise.

The two cases in Eq. (9) are physically distinguished by the
presence of weak couplings and correspond to segments

AB and BC in Fig. 1, respectively. Here, ¢ is an
[-independent constant, and we pithily dub w the loga-
rithmic wandering coefficient (see Supplemental Material
[64] for the derivation). Generically, this coefficient
depends only on the wave vector Q and number and order
of the zeros within a period of the coupling functions. We
conjecture that w uniquely parametrizes the family of QP
Ising transitions.

The correlation length exponent follows immediately
from the coarse-grained wandering described by Eq. (9).
On segment AB, v = 1 and the mean and typical correla-
tions do not separate. This is consistent with AB being in
the clean Ising universality class [34]. On segment BC, the
mean correlation length is logarithmically enhanced:

£~ (8] log!2(1/[8]) (10)

compared to &, (i.e., “v=1%").

Dynamical exponent—The dynamic properties show
more dramatic signatures of the change in universality.
Treating the secular equation of the Hamiltonian (2) to
leading order in the wandering of S,, we find

el +w. (11)

This follows from estimating the scaling of the bandwidth
of the lowest band with period ¢ (see Supplemental
Material [64]) [73]. For the golden mean Q/2x = 7, the
wandering coefficient w = (272/15v/5log7) ~ 1.2 [74],
which produces an estimate of z = 2.2.

This estimate of z neglects spatial correlations of the
wandering, higher-order moments and the deterministic
deviations of ¢(S,) from its Cesaro average. We are thus
unable to detect multiplicative logarithmic corrections to
the dynamical scaling which are suggested by Eq. (10). All
results which follow are valid only up to the possibility of
such corrections.

Figure 3 shows three different numerical measurements
of z which collectively verify both single-parameter scaling
and universality. Figures 3(a) and 3(b) probe dynamical
scaling through the ¢, A averaged integrated density of
states n(e) ~ €'/ at asymptotically vanishing and finite
energy scales, respectively. With periodic modulation ¢, the
maximum energy €, of the lowest miniband satisfies
n(ey) = 1/q. This implies €, ~ ¢~%; Fig. 3(a) confirms
this power law holds with exponent z = 1.9 for system sizes
over 5 orders of magnitude up to ¢~ 10°. Figure 3(b)
shows that the same exponent governs the scaling of n(e)
with € up to a finite energy. Here, n(¢) is extracted from the
histogram of energy levels from 10* diagonalizations at
size ¢ = 4181 across sampled values of ¢, A. Both panels
collapse data from a series of points along the BC phase
boundary, consistent with universality.

We extract £7'(e) from a least squares fit to the
relationship
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FIG. 3. Dynamical scaling at the QP Ising transition. (Left) The maximum energy of the lowest band [e] . Scales as a power law ¢~*
over 5 orders of magnitude (mean over 5000 ¢, A samples at each Fibonacci length). (Inset) Least squares fit exponent z as a function of
the parameter along the phase boundary. (Center) The integrated density of states [n(e)],, o ~ €'/% over 7 orders of magnitude in energy at
the largest size available (g = 4181). (Right) The inverse localization length [1/£(¢)], 4 is linearly proportional to n(e), consistent with
single-parameter scaling. The deviations from the central trend show sharp features at the log-periodically spaced convergents of the
golden ratio 7 (vertical dashed lines). In all panels, the measurements are shown at five different values of I'/Ar- on segment BC of Fig. 1,
indicating universality. Standard errors are smaller than the point size; deviations from power law trends are deterministic and due to the

QP modulation.

log[lyi(€)@iy-(e)l] = —r&~'(€) +const,  (12)
where y;(€) is the eigenmode at energy e for systems of
size ¢ = 1597. We again see evidence of universality along
the phase boundary.

In all three panels in Fig. 3, the visible deviation from
pure power laws reflects deterministic modulation. The
phase averaging of various quantities reduces the deviations
from the central trends but does not completely suppress
them. We expect deviations from pure power laws due to
rare values of [ at which 6(S,) deviates significantly from
its Cesaro mean [see Eq. (9)]. These special values are
marked by dashed lines in Fig. 3(c), where they correlate
with atypically delocalized excitations.

The presence of these special points leads us to conjecture
that the single-parameter scaling forms, e.g., in Eq. (6), hold
up to anonuniversal multiplicative O(1) function. Thatis, the
scaling form provides the envelope for these O(1) fluctua-
tions. A consequence of this hypothesis is that the critical
exponents are well defined as ¢ — oo but the convergence of
finite-size numerical estimates is only O(1/log ¢). This is
consistent with the scatter in the inset in Fig. 3(a).

Scaling dimensions.—The equal time correlators at the
QP Ising transition decay with a faster power law than at the
clean Ising transition but slower than at infinite random-
ness. Figure 4 shows the excellent finite-size scaling
collapse of the mean equal time spin correlator
(6767, ,)]i p.a at the QP transition. Using data from differ-
ent points on the QP transition line, we extract A, = 0.16
[see Eq. (6)]. We find a similarly enhanced value of the
scaling dimension of the Majorana fermions A, ~0.63
(data not shown). In contrast, for the clean TFIM

A,=0.125, A, =05, and for the random TFIM
A, =(3-1/5)/4~0.19, A, ~ 1.1 [10,75].

The QP critical correlations are observed on length
scales r < g; for r > g, the system is actually periodic
and we recover clean Ising correlations [76]. In Fig. 4, this
is presaged by the small upturn near r = gq.

Discussion.—Weak quasiperiodic modulation is well
known to be perturbatively irrelevant at the clean Ising
transition [34]. We have shown that sufficiently strong
modulation destabilizes this transition and drives the TFIM
into a new spatially modulated QP Ising transition. Like in
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FIG. 4. Finite-size scaling of spin correlations. (Main) The
average spin correlations ¢**<[(o707,,)]; 44 collapse when plot-
ted versus fractional separation r/q for critical dimension A, ~
0.16 at (J =T)/A; = 0.5. (Inset) Least median deviation fit
exponent A, is stable along segment BC consistent with
universality.
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the infinite randomness case, the low-energy excitations are
localized throughout the critical fan, although with a power
law diverging localization length as € — 0. The exponents
of the QP Ising transition lie between their clean and
disordered counterparts. The most dramatic signatures of
this transition are in the localized dynamics and larger
specific heat as compared to the clean case.

Our results rely on the emergence of logarithmic wander-
ing with coefficient w describing the dominant long-
distance fluctuations of the order. We conjecture that w
controls the universal content of a family of QP Ising
transitions. As w is only a function of wave number Q and
the number and order of the zeros of J(@),T(0), it follows
that the critical properties are insensitive to smooth per-
turbations which preserve the wave number. This is
investigated in Ref. [69]. We have provided numerical
evidence for this universality by varying couplings along
the boundary BC.

Remarkably, logarithmic wandering arises without weak
couplings when J(6), I'(9) have step discontinuities.
Technically, this follows from the 1/k tails in the
Fourier transform of §(). As the size of the steps controls
w, we can realize a large family of QP Ising transitions with
tunable exponents in such models. The quasiperiodic
substitution sequences studied in Refs. [26-39,42] corre-
spond to choosing J(6), I'(#) to be certain square waves.
Though in these models there is no concomitant localiza-
tion of excitations, mutatis mutandis, our analysis applies:
Generically, these models have the logarithmic wandering
of Eq. (9) and power law criticality intermediate to the
clean and random cases [34,69,72].

The stability of the QP Ising transitions to the intro-
duction of interactions is an open question. On the one
hand, interactions which effectively lift weak couplings
could destroy the log wandering. On the other hand, the
example of step modulation suggests that weak couplings
are not strictly necessary for modified criticality.
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