
 

Nonlinear Electromagnetic Stabilization of Plasma Microturbulence
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The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-
driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic
simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear
interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet
correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport
estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.
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Thermal losses caused by turbulence are a major impedi-
ment to achieving controlled fusion in magnetic confine-
ment devices.While losses can be limited through the design
of large-scale devices, the cost increases commensurately,
and transport control in the form of an edge transport barrier
is still required. Barrier and transport control strategies
require a thorough understanding of the turbulent state that
develops from plasma instabilities. A key milestone in
understanding turbulence (and a means for finding success-
ful control strategies) has been the development of models
capable of predicting turbulent plasma behavior and its
transport. Part of this effort is to incorporate the physics
insights gained into more practical reduced models.
One operating regime, desirable for fusion because it

raises the fusion energy gain and enhances self-generated
confining currents, is high β, where β ¼ 8πne0Te0=B2

0 and
ne0, Te0, and B0 are equilibrium values of electron density,
temperature, and magnetic field, respectively. This regime
involves electromagnetic fluctuations and is of additional
interest, because it exposes shortcomings both in the
understanding of turbulent transport and in reduced models
used for producing quick predictions of turbulent flux
levels. The most familiar examples of the latter are quasi-
linear mixing-length transport models.
The impact of β on confinement is not entirely clear, with

different experiments showing different scalings [1–3].
Moreover, the effect of β on different microturbulence
regimes varies, decreasing transport in ion-temperature-
gradient-driven (ITG) turbulence while increasing transport
in trapped-electron-mode turbulence [4–7]. Fast ions can
further reduce ITG turbulence [8,9]. Note that here electro-
magnetic effects refers to the sum of all nonequilibrium
finite-β physics, including the direct impact in Ampère’s
law from the plasma current and the effect on fluctuations
by particle streaming along perturbed fields.
A difficult aspect of the reduction of ITG turbulence with

β is that it cannot be explained by the effects of the

instability alone. This is a problem for quasilinear transport
models, which are based on the instability’s properties.
Quasilinear transport models are semiheuristic, with fluxes
constructed dimensionally from the instability growth rate
and a fluctuation scale, but with an overall level set from a
nonlinear simulation [10,11]. Different quasilinear models
are distinguished by their refinements to this approach
[12,13]. The attractiveness of quasilinear models lies in
their low computational cost compared to nonlinear sim-
ulations. However, they make implicit assumptions about
the saturation physics, and one cannot generally predict
their validity. The quasilinear electrostatic ion heat flux Qes

i
in normalized units for tokamak geometry [11,14,15]:

Qes
i ¼ ωTiC

X
k

wkγk
hk2⊥i

; ð1Þ

hk2⊥i ¼ k2y

�
1þ ŝ2

R
ϑ2jΦkðϑÞj2dϑR jΦkðϑÞj2dϑ

�
; ð2Þ

is described by Fick’s law as a diffusion coefficient
multiplied by the normalized ion temperature gradient
ωTi ¼ −ðR0=Ti0ÞðdTi0=dxÞ, R0 is the major radius, x is
the radial coordinate, and Ti0 is the ion temperature. The
diffusion coefficient depends on a scalar model constant C,
the linear growth rate spectrum γk, and an effective
perpendicular wave number hk2⊥i. The latter depends on
the binormal wave number ky, normalized magnetic shear
ŝ ¼ ðr0=q0Þðdq=dxÞ, where q0 is the safety factor and r0 is
the radial coordinate, and the eigenmode potential ΦkðϑÞ,
where ϑ is the ballooning angle. The model is weighted by
wk ¼ Qes

i;kjlin=n2i;kjlin, where Qes
i;kjlin is the heat flux gener-

ated by the unstable eigenmode at wave number k and
n2i;kjlin is the square of the ion density of the same mode.
Despite their simplicity, quasilinear estimates show good

agreement with nonlinear predictions for many parameter
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scalings, including temperature gradients, temperature
ratio, collisionality, and effective charge [15–17].
However, in the case studied here, the above quasilinear
model predicts only a 50% reduction in transport between
low and high β compared to a 95% reduction seen in
nonlinear simulations. The quasilinear model’s failure to
accurately predict electromagnetic stabilization indicates
that it does not include changes to the underlying saturation
physics with β.
To understand the effect of β on saturated ITG turbu-

lence, a series of diagnostic measurements in gyrokinetic
simulations are performed to characterize the role of stable
modes, including measurements of free energy production,
nonlinear transfer, and dissipation. Stable modes are
important in turbulence when their levels are sufficient
to impact saturation. This generally occurs when there are
stable modes with damping rates comparable to the growth
rate, a condition fulfilled in numerous systems [18,19]. The
extent to which stable-mode effects can be incorporated
into reduced transport models is studied here for the first
time. All simulations were carried out using the gyrokinetic
code GENE [20,21]. We use parameters with a single
unstable ITG mode for each perpendicular wave vector
in the unstable range. The two-dimensional scan in β and
ωTi follows parameters in Ref. [6]. If not labeled otherwise,
all plots are for ωTi ¼ 8, though conclusions hold for all
temperature gradients investigated here (ωTi ¼ 6, 7, 8).
The free energy for species j is given by [22]

Ek ¼ Re
�Z

dzdv
nj0Tj0

Fj0

�
gjk þ

qjFj0

Tj0
χjk

��
gjk

�
; ð3Þ

where −π ≤ z < π is the parallel coordinate, Fj0 is the
background Maxwellian distribution, qj is the species
charge, and gjk ¼ fjk þ ð2qj=mjvTjÞvkĀkFj0 is the modi-
fied distribution function, depending on the distribution
function fjk, the species mass mj, the thermal velocity of
the species of interest vTj, the velocity parallel to the
magnetic field vk, and the parallel component of the
gyroaveraged magnetic vector potential Āk. The modified
potential χj ¼ Φ̄ − vTjvkĀk depends on the gyroaveraged
potential Φ̄. For β ≪ 1, parallel magnetic fluctuations δBk
are small and neglected here.
Gyrokinetic models have many eigenmodes at every

wave number whose nonlinear excitation can introduce
scalings outside the normal dependencies of the quasilinear
theory. These eigenmodes, which span the phase space of
velocity and parallel displacement, are roots of the linear
gyrokinetic operator. Spectral energy transfer couples
eigenmodes through the E ×B nonlinearity, which trans-
fers energy within wave number triplets according to the
condition k − k0 ¼ k00. The energy transfer rate to Fourier
wave number k ¼ ðkx; kyÞ due to coupling with k0 and
k00 is

Tk;k0 ¼ 2Re

�Z
dzdv

nj0Tj0

Fj0

�
gjk þ

qjFj0

Tj0
χjk

��

× ½ðk × k0Þ · b̂�
�
χjðk0Þgjðk00Þ

��
: ð4Þ

This function is decomposed so that it tracks transfer to
individual eigenmodes, revealing that electrostatic ITG
turbulence saturates through zonal-flow-mediated energy
transfer to higher radial wave numbers and stable modes at
the same scales as the instability [23–25]. Zonal flows [5]
and stable modes [26] are known to be susceptible to finite-
β effects; hence, the decomposition of Tk;k0 is analyzed to
determine their role in saturation.
The inclusion of electromagnetic effects does not quali-

tatively change the saturation mechanisms. From the
decomposition of Eq. (4) for the wave numbers that have
the highest energy injection rate, which are responsible for
the most flux, roughly 90% of the energy transfer is
mediated by fluctuations at the zonal wave number
ky ¼ 0. Several percent of this energy is deposited into
the zonal mode, and the rest goes to the higher-kx mode.
Energy transfer to the unstable and stable eigenmodes at the
higher-kx mode in the triplet is comparable.
The large number of stable modes makes tracking their

individual amplitudes numerically infeasible, and the
effects of stable modes on the turbulence are complicated
by their widely differing damping rates and mode struc-
tures, as well as mode nonorthogonality. A simpler analysis
technique is to decompose the distribution function at a
wave number into the unstable mode and a remainder
spanned by stable modes.
Figure 1 shows the energy transfer rate to the higher-kx

mode due to coupling to a zonal mode responsible for a
significant energy transfer with kx ¼ 0.083, split into a
transfer to the unstable eigenmode T1

ZF and the remainder
Ts
ZF of the combined stable modes. In Eq. (4), this is

equivalent to choosing k0 ¼ ð0.083; 0Þ and decomposing
gk into the unstable mode and a remainder spanned by
stable modes. The energy transfer rate to stable modes is
negative for the lowest kx wave number, because

FIG. 1. Zonal-flow-catalyzed energy transfer to unstable modes
T1
ZF (red circles) and stable modes Ts

ZF (black diamonds) at
kyρs ¼ 0.4 as a function of the radial wave number.
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nonorthogonality enhances energy production; this is
described later in the section on effective growth rates.
The decline in the energy transfer rate is related to stable
mode dissipation, which can be measured by summing over
all the couplings, and is approximated here with a sum over
zonal couplings. At ky ¼ 0.4, stable modes dissipate 70%
of the energy produced by the unstable modes up to the end
of the unstable range at kx ¼ 0.25, while at ky ¼ 0.2, their
net effect enhances the energy production by 20% in the
same range.
Individual terms of the nonlinearity make different con-

tributions to the saturation of the instability. The free energy
[see Eq. (3)] is the sum of terms proportional to kgk2=F0 and
χ�g, an entropylike and a wave-energy term, respectively.
The transfer of entropy (∝ gkχk0gk00) was found to be larger
by more than an order of magnitude than that of field energy
(∝ χkχk0gk00) at all β. This mirrors the electrostatic case,
where entropy is similarly larger than wave energy [27].
However, the wave-energy contribution grows with β.
The catalytic zonal mode χk0 of the nonlinearity (k0y ¼ 0)

can be split into electrostatic and electromagnetic compo-
nents proportional to Φ̄ and Āk. Energy transfer can be
decomposed similarly. Energy transfer from the electro-
magnetic term (∝ gk ¯Ak;k0gk00 ) was found to scale with β and
to generally be negative several percent of that from its
electrostatic counterpart (∝ gkΦ̄k0gk00 ).
The projection of the turbulent distribution function gnl

onto the linearly unstable ITG eigenmode glin determines
the extent to which the turbulence is represented by the
unstable mode. The projection is given by

Pðgnl; glinÞ ¼
kgnlðz; vÞ · glinðz; vÞk

kgnlkkglink
: ð5Þ

The projection can take values between 0 and 1, with 0
meaning the distribution function is perfectly described by
a sum of stable eigenmodes, while for 1 it is perfectly
described by the unstable eigenmode.

Figure 2 shows the time average of Pðgnl; glinÞ at two
wave numbers as a function of ωTi and β. The mode at
ky ¼ 0.2 is around the peak in transport, while ky ¼ 0.4 is
closer to the peak in the growth rate. Stable mode excitation
is enhanced with β and depends strongly on perpendicular
wave number, consistent with the results depicted in Fig. 1.
The turbulent distribution function at low ky resembles the
unstable mode, decreasing its corresponding contribution
from 75% to 60% as β increases from 0.01% to 0.75%. At
higher ky, the unstable mode contribution changes from
around 40% to 35% over the same range in β.
Measuring the stable mode fraction alone misses the

effect of stable modes on energy production and dissipation,
which cannot be inferred from the amplitude alone, as many
modes simultaneously make differing contributions. The
normalized energy production rate provides a quantitative
measure of the net effects of stable modes on the energy.
For energy production, consider an effective nonlinear

growth rate defined as

2γeff ¼
dEk=dtjNC

Ek
; ð6Þ

where dE=dtjNC represents the energy change arising from
nonconservative terms [28–30], which can be compared
directly to the growth rate of the unstable mode γITG for a
measure of the role of stable modes in saturation. If stable
modes are not excited in saturation, the effective growth
rate γeff is equal to γITG.
Figure 3 compares γeff with γITG at two β values. Near

ky ¼ 0.1, i.e., around the peak in transport and energy
production, γeff follows and even slightly exceeds γITG.
Where γeff exceeds γITG, the stable mode contribution
boosts energy production by increasing g�kikyχk. Higher
wave numbers show decreased γeff , with net energy
dissipation in the tail of the linearly unstable range. The
relative change mimics the unstable mode proportion;
where the distribution function is well described by the
unstable mode, γeff follows γITG closely, while increased
stable mode excitation at a higher wave number brings γeff
down significantly. While stable modes and their effect on

FIG. 2. Temperature gradient dependence of the unstable mode
fraction Pðgnl; glinÞ at two wave numbers in the saturated
turbulent state. Plotted are β ¼ 0.01% (black circles), β ¼
0.25% (red squares), β ¼ 0.5% (blue triangles), and β ¼
0.75% (magenta diamonds). The two wave numbers are kyρs ¼
0.2 (solid line) and kyρs ¼ 0.4 (dashed lines).

FIG. 3. Spectrum of the nonlinear γeff (solid lines) and the
linear γITG (dashed lines) at β ¼ 0.01% (black circles) and β ¼
0.75% (magenta diamonds).
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the energy are always seen to be important in saturation,
their impact does not change much with β. The increase in
stable mode excitation is only equivalent to a decrease in
the growth rate of 10%–20%, compared to the 90%
reduction relative to quasilinear flux, so increased stable
mode excitation is only a secondary player in the heat flux
β scaling.
The direction and magnitude of the energy transfer

depends on the relative phase between modes within a
triplet; the time-averaged transfer depends on their correla-
tion. Eddy-damped quasinormal Markovian closures [31]
predict that energy transfer rates are proportional to Ĝτ,
where Ĝ depends on coupling coefficients and products of
energy quantities, and the triplet correlation time τ ¼
−i½ω̂00 þ ω̂0 − ω̂��−1 relates to the time modes spend in
phase [30,32,33]. A recent analytical calculation of the
saturation of toroidal ITG in a fluid model [34] shows that
saturated turbulent amplitudes scale inversely with τ, and
maximizing τ is currently being investigated for stellarator
turbulence optimization studies [35]. Because the energy
transfer rate scales with τ, it can be thought of as a nonlinear
efficiency, where the highest τ, corresponding to the
resonance of the three frequencies, allows smaller mode
amplitudes to match the energy injected by the instability.
Formally, τ is the timescale associated with the nonlinear
response to an impulse; when τ is small, the system has a
limited memory of interaction. The nonlinear frequency ω̂
for amode atk can be expressed as the linear frequencywith
nonlinear corrections due to the interactions with other
modes. It can be measured directly from the Fourier trans-
form of the temporal autocorrelation function of Φ̄k [36]. A
common fitting assumption is that this follows a Lorentzian
or Gaussian with peak at the real frequency and width
corresponding to the eddy damping rate [37].
Figure 4 shows jτj for zonal couplings to the mode which

causes the most energy production and transport. The
quantity jτj is highest for coupling to modes at a low

radial wave number, which energy transfer analysis reveals
to be those with the dominant energy transfer rates.
Increasing β from 0.01% to 0.75% doubles jτj, under-
scoring that the nonlinear correlation effect is significantly
more impactful on nonlinear electromagnetic stabilization
than the stable mode effect as measured by the unstable
mode partition or the energy production rate.
Measurements of τ from nonlinear simulations are too

computationally involved for quick predictions. As a linear
proxy, we consider τlin ¼ −i½ω00

ITG − ω�
ITG�−1, which mea-

sures the triplet correlation lifetime between two unstable
eigenmodes and an undamped, zero-frequency zonal flow.
The β scaling of this proxy is similar to that of the fully
nonlinear quantity in the wave number region of interest,
seen implicitly from Fig. 5. Larger β extends the mode
structure [38] and increases jτj by reducing the dependence
of γ on kx. The quantity τlin differs from τ, because it
represents the first step in a cascade to a higher wave
number instead of direct coupling to a dissipation mecha-
nism, and it lacks nonlinear frequency corrections. The
effect of nonlinear frequency corrections and stable modes
on τ will be discussed in a subsequent paper.
Now we discuss the heat flux scaling, its modeling by

the quasilinear formula Eq. (1), and the effect of the
nonlinear properties mentioned above. Figure 5 compares
the quasilinear scalings of

P
γk=k2⊥,

P
wj;kγk=hk⊥i2,P jτnl;kj−1wj;kγk=hk⊥i2,

P jτlin;kj−1wj;kγk=hk⊥i2, and non-
linear flux Qes

i with β at ωTi ¼ 8. The nonlinear heat
transport is reduced by roughly a factor of 20 over this
range in β. In comparison, the growth rate decreases by less
than half. Incorporating the proper weights with a
perpendicular scale (hk2⊥i vs k2⊥) and normalized transport
wk lowers transport predictions 30% as structures broaden
with β. The model that scales inversely with jτnl;kj predicts
an 80% stabilization, which is much closer to the nonlinear
results. With ωTi ¼ 6 (ωTi ¼ 7), the quasilinear model

FIG. 4. The absolute value of the triplet correlation time jτj is
calculated for triplets involving the mode at kyρs ¼ 0.15 and
zonal flows at individual kxρs, for β ¼ 0.01% (black circles),
β ¼ 0.25% (red squares), β ¼ 0.50% (blue triangles), and β ¼
0.75% (magenta diamonds). A clear increase of nonlinear
efficiency with β is observed, which is responsible for most of
the nonlinear stabilization due to finite β.

FIG. 5. Normalized heat flux (red circles) as a function
of β, compared to the following quasilinear models:P

kγk=k
2⊥ (blue squares),

P
kwj;kγk=hk2⊥i (green upwards

triangles),
P

kjτnl;kj−1wj;kγk=hk2⊥i (magenta diamonds), andP
kjτlin;kj−1wj;kγk=hk2⊥i (black downwards triangles). All quasi-

linear data use model constants such that the nonlinear flux is
matched in the electrostatic limit.

PHYSICAL REVIEW LETTERS 120, 175002 (2018)

175002-4



predicted a 70% (60%) reduction in the flux, compared to
the τ-modified model predicting a 95% (90%) with actual
reductions of 99% (95%). Transport predictions are very
similar between quasilinear models using linear and non-
linear τ. Whether the agreement seen in Fig. 5 is special to
the case examined or more general will be investigated
elsewhere. The τ proxy based on couplings between two
unstable modes and a zonal flow may work well, because
the balance between transfer to stable modes and unstable
modes does not depend strongly on β. This model does not
include the enhanced stable mode excitation with β dis-
cussed earlier, which would further reduce transport. While
this modification constitutes a clear improvement relative
to existing models, one can envision cases where the
inclusion of τ will not be sufficient to recover nonlinear
results; such cases include changes to the stable mode
dissipation [18] or multiple unstable eigenmodes.
Experimental parameter sets with collisional dissipation
will be addressed in further work. These findings demon-
strate the importance of τ as a fundamental contributor in
nonlinear energy transfer.
To summarize the findings of this Letter, we note that,

qualitatively, electromagnetic effects do not change ITG
saturation physics. Energy production due to the instability
is balanced by a transfer to higher-radial-wave-number
unstable and stable modes. The latter changes energy
production, increasing normalized energy production at
low ky and extending the unstable radial wave number
range, while at higher binormal wave numbers providing a
stabilizing effect.
Electromagnetic effects strongly reduce transport from

ITG turbulence. The majority of this effect is due to a
higher triplet correlation time jτj, which can be thought of
as an efficiency factor in the nonlinearity. Quasilinear
transport models scaled with jτj−1 accurately follow non-
linear transport predictions across the investigated β range.
While preliminary, linear proxies for the triplet correlation
time that use eigenmode frequencies show promise for use
in quasilinear models.
While these findings are robust throughout a wide range

of temperature gradients and β, further work is in progress
applying this scaling to gyrokinetic analyses of experi-
mental β scans on multiple devices. The role of the τ in
electromagnetic stabilization due to fast ions is also under
investigation.
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