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Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device
experiment are investigated using a hybrid simulation code for energetic particles interacting with a
magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden
excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation
using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global
spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk
pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the
frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not
depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy
the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
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The geodesic acoustic mode (GAM) is an oscillatory
zonal flow coupled with density and pressure perturbations
in toroidal plasmas [1-4]. In the last decade, energetic-
particle-driven GAMs (EGAMs) were observed at the Joint
European Torus [5,6], the DIII-D [7-9], the Large Helical
Device (LHD) [10-14], and the ASDEX Upgrade [15].
In the DII-D experiment, drops in neutron emission
followed the EGAM bursts, suggesting beam ion losses
[7]. Also, in the LHD experiment, anomalous bulk ion
heating during the EGAM activity suggests a GAM
channeling [12]. In addition, EGAM can interact with
turbulence and affect the plasma confinement [16,17]. The
understanding of the EGAM thus is important for magnetic
confinement fusion where the energetic particles need to be
well confined and the bulk plasma needs to be efficiently
heated. The EGAM has been studied extensively. It was
demonstrated that the poloidal mode number of the EGAM
is m = 0 for potential and m = 1 for density. Also, the
EGAM is a global mode with the spatially uniform
oscillation frequency. In addition, the EGAM frequency
can be lower or higher than the conventional GAM
frequency under different conditions [18-21]. The above
discussion has been advanced theoretically, computation-
ally, and experimentally.

Recently, in LHD an abrupt excitation of a half-frequency
secondary mode was observed when the frequency of a
chirping primary EGAM reached twice the GAM frequency
[14]. The secondary mode is important because of its low
frequency. The lower frequency mode has a lower phase
velocity; thus, this mode interacts more easily with the
thermal ions and transfers energy to ions. As a result, the
plasma heating thus becomes easier. Since the appearance of
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the secondary mode is related to the neutral beam injection
(NBI), the secondary mode may create an energy channel
between the energetic particles and the bulk plasmas. A one-
dimensional simulation with the kinetic energetic particles
and a nonlinear coupling coefficient between the primary
and secondary modes was used to reproduce these two
modes [22]. Lesur et al. [22] have claimed that the secondary
mode is driven by the cooperative combination of fluid
nonlinearity and kinetic nonlinearity.

MEGA [23-25], a hybrid simulation code for energetic
particles interacting with a magnetohydrodynamic (MHD)
fluid, is used for the simulation of EGAMs. In the MEGA
code, the bulk plasma is described by the nonlinear MHD
equations. The drift kinetic description and the §f particle
method are applied to the energetic particles.

A realistic three-dimensional equilibrium generated by
HINT code [26] is used for the simulation. These equilib-
rium data are based on the LHD shot No. 109031 at time
t =4.94 s . At that time, t = 4.94 s, the EGAM activity is
very strong; thus, it is appropriate to reproduce the EGAM
phenomenon in a simulation.

In the experiments of LHD, the EGAMs were observed
under the bump-on-tail energetic particle distribution
[12,14]. Thus, in this Letter, we implement the simulation
with the same type of distribution. For the bump-on-tail
distribution, the charge exchange is considered, and the
velocity distribution is

1) = €0 + o) 13/, (n

which is the same as Eq. (1) in Ref. [21]. C is an integration
constant, v,. is the critical velocity, 7z, is the slowing-down
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time, and 7., is the charge exchange time. The shape of the
distribution function is controlled by the ratio z,/z,,. For
7., — 00, the 7 ratio is 0 and the distribution function is the
typical slowing-down type. With the increase of 7,/z,,, the
slowing down becomes insufficient gradually, and more
energetic particles distribute in the high-energy region and
form a bump-on-tail distribution. The distribution function
of f(v) in this Letter is the same as the experimental
observations [13,14].

In addition, a Gaussian-type pitch angle distribution
g(A) is assumed for the energetic ions:

9(A) = exp[—(A = Apea)?/AN?], 2)

where A represents the pitch angle for the distribution
peak and AA is a parameter to control the distribution
width.

The parameters for the EGAM simulation are based on a
LHD experiment [14]. Those parameters are By = 1.5 T,
electron density n, = 0.1 x 10! m™3, electron temperature
at the magnetic axis 7, = 4 keV, and bulk plasma f value
on the magnetic axis equal to 7.2 x 10™*. The counter-
injected neutral beam energy is Eynp; = 175 keV. The
safety factor g profile is negative normal shear with the
value 2.82 at the magnetic axis and 0.84 at the plasma edge.
The major radius of the magnetic axis is Ry = 3.7 m.
Cylindrical coordinates (R, ¢, z) are employed. For LHD
equilibrium, there are ten pitches in the toroidal direction.
Since the toroidal mode number of the GAM is n =0,
for simplicity, only one pitch from ¢ =0 to ¢p = 0.27 is
used for the present simulation, while other pitches from
¢ = 0.2z to ¢p = 2x are obtained by periodic extension.
This simplification is made to save computational resources
and time. The numbers of grid points of this pitch in the
(R, ¢, z) directions are (128,64,128), respectively.

Both the chirping primary mode and the half-frequency
secondary mode are reproduced with the MEGA code, as
shown in Fig. 1. Figure 1(a) shows the poloidal velocity v,
frequency spectrum including all of the frequency compo-
nents, and Fig. 1(b) shows v, evolution including only 50
and 100 kHz components. The primary mode frequency
chirps up in the nonlinear phase from 70 kHz in the linear
growth phase. The mode is saturated at t = 0.07 ms and
then moves into the nonlinear phase. At t = 1.7 ms, the
frequency of the primary mode reaches 102 kHz, and a
secondary mode with frequency f = 51 kHz is excited.
The amplitudes of the primary mode and the secondary
mode are close to each other. The simulated phenomenon
is very similar to the experimental observation, as shown
in Fig. 2 of Ref. [14]. This is the first simulation that
reproduces both the primary mode and the secondary
mode with a three-dimensional model and realistic input
parameters.

The frequency of the primary mode is 2 times that of the
secondary mode, and this frequency relation can be easily
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FIG. 1. The EGAMs in LHD are reproduced by MEGA code.

(a) The poloidal velocity frequency spectrum including all of
the frequency components. (b) The poloidal velocity time
evolution including only 50 kHz (red) and 100 kHz (green).
(c) and (d) are similar to (a) and (b), but the MHD equations are
linearized from ¢ = 1.253 ms.

confirmed by Lissajous curves. Figure 2 shows the
Lissajous curves between dBy/dt associated with the
primary and secondary modes. Figure 2(a) is plotted in
the growth phase and Fig. 2(b) is plotted in the decay phase
of the secondary mode. The phase locking is clearly shown
in the figure, and it indicates a coupling between the
primary mode and the secondary mode. The Lissajous
curves in the present simulation are consistent with the
experiments, as shown in Fig. 5 of Ref. [14].

The mode profiles of poloidal velocity vy and bulk
pressure perturbation OPy, are plotted in three-
dimensional figures, as shown in Fig. 3. The five slices
in each panel represent five poloidal cross sections, and
their toroidal positions are from ¢ = 0 to ¢p = 0.4z, with a
toroidal interval of 0.1z. For vy, red represents a positive
value. In other words, red represents counterclockwise
rotation in the poloidal direction, while blue represents
clockwise rotation. For 6Py,, red represents positive
perturbation, while blue represents negative perturbation.
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FIG. 2. Lissajous curves between dBy/dt values associated
with the primary and secondary modes. (a) represents the time
evolution of the secondary mode, while (b) and (c) correspond to
the Lissajous curves in the growth phase (red) and the decay
phase (blue), respectively.

Figure 3 shows that the dominant components of v, and
6Py are m/n = 0/0 and 1/0, respectively. Also, further
analyses show that both the primary mode and the
secondary mode are global. The mode number and the
mode structure are consistent with the experiment, as
shown in Fig. 4 of Ref. [14].

The poloidal velocity vy is a combination of m/n = 0/0
(strong), 1/0 (medium), and 2/10 (weak) components. The
m/n =2/10 component exists due to the LHD configu-
ration, because in the LHD there are ten pitches in the
toroidal direction and there are two high field regions and
two low field regions in the poloidal direction. This is the
first simulation of EGAM in the three-dimensional LHD
configuration. The mode number is different from the
tokamak case where the v, oscillation is a combination
of the m/n =0/0 and 1/0 components.

The secondary mode is identified as an EGAM in this
Letter for three reasons. First, the poloidal mode number
is m = 0 for poloidal velocity and m =1 for pressure
perturbation. This is the feature of the EGAM and the
conventional GAM. Second, the mode frequency is almost
the same as the conventional GAM frequency. According to
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FIG. 3. The mode profiles of (a) vy and (b) 6Py in the three-
dimensional form.

the theoretical prediction, under the present simulation
conditions, the conventional GAM frequency should be
50.1 kHz. The simulated frequency of the secondary mode
is 51 1.5 kHz. And third, the secondary mode is global.
The EGAM is global, while the conventional GAM is local.
This is one of the differences between the EGAM and the
conventional GAM [7,15,18,20]. The global structure is
caused by the large energetic particle orbit width
[8,9,15,18,20]. The coupling strength between the ener-
getic particles and the conventional GAM changes by bulk
plasma temperature and GAM continuum, and thus the
mode structure can also be affected by bulk plasma
[4,15,19]. Based on the three properties discussed above,
we conclude that the simulated secondary mode is an
EGAM. A question may arise regarding why the primary
EGAM and the secondary EGAM have different frequen-
cies. In order to clarify the reason, the bulk plasma pressure
perturbation 6Py, and the energetic particle pressure
perturbation 6P are analyzed, as shown in Fig. 4.
The most dominant component of 6Py, and 6P is
m/n = 1/0 sine. For simplicity, only this dominant com-
ponent 1/0 sine is shown in Fig. 4. For the primary mode,
the phase of 6Py, and 6Py, are the same, and they enhance
each other. The primary mode is driven by both 0Py
and 6Py, . For the secondary mode, the phase difference
between 6Py, and 6Py is x. In other words, they are in
antiphase, and they cancel each other out. Thus, the
frequency of the secondary mode is much lower than the
primary mode. The phase of 6P, is the same as 6P, but
the absolute value of 6P, is much smaller. Thus, 6P}, is
not shown in the figure.
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FIG. 4. The 6Py oscillation and the 6P, oscillation of (a) the
primary mode and (b) the secondary mode. EP is the abbreviation
of energetic particle.
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In Ref. [22], the authors claimed that both the fluid
nonlinearity and the kinetic nonlinearity are important for
the secondary mode excitation. In order to clarify the
importance of the fluid nonlinearity, a special linearized
MHD model is applied in this Letter. The linear MHD
equations are the same as those in Ref. [23]. In this work,
simulations are performed in two stages. In the first stage,
the nonlinear code is run until time = 1.253 ms, when the
EGAM is completely saturated but the secondary mode has
not yet been excited. Then, in the second stage, both the
linear and the nonlinear MHD codes are run separately
from the end of the run of the first stage. In the second
stage, the secondary mode appears in both runs. In other
words, the secondary mode can be excited even if the MHD
equations are linearized. In the linearized MHD run, the
appearance of the secondary mode is delayed, but the
amplitude is almost the same. This result is different from
that in Ref. [22]. In this work, the excitation of the
secondary mode is only caused by the kinetic nonlinearity,
while the fluid nonlinearity hardly affects the amplitude of
the secondary mode.

In order to determine the reason why the frequency
relation between the primary mode and the secondary mode
is exactly double that which is shown in Fig. 2, and also to
further confirm the role of the kinetic nonlinearity, the energy
transfer versus transit frequencies of resonant particles is
plotted in Fig. 5. Three lines correspond to different phases
of the secondary mode: before the excitation, during the
growth, and at the time of the beginning of decay at
maximum amplitude. The poloidal transit frequency is
defined by fi, = /(1 —A)(2E/mgp)/(27qR,), where
mgp is the energetic particle mass. The negative dE/dt
indicates that the energetic particles lose energy and the
energy is transferred to the mode, and thus the mode is
destabilized. We see in Fig. 5 that the energy transfer is
strong when the secondary mode is growing at t = 1.75 ms.
This indicates that the energy transfer from the particles
with f; =~ 100 kHz excited the secondary mode with
f ~50 kHz. This interaction may be the nonlinear reso-
nance. For the linear resonance, the phase of the wave is the
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FIG. 5. The energy transfer versus transit frequencies of

resonant particles at 1.60, 1.75, and 1.81 ms.

same when the particle passes each time around the poloidal
angle [27], while the phase is the same when the particle
passes K (K > 1) times around the poloidal angle for the
nonlinear resonance. The nonlinear resonance is negligible
for the linear stability analysis but may transfer substantial
energy for finite-amplitude waves. Nonlinear resonance is
also called higher-order resonance or fractional resonance,
and it is commonly known [28]. Fractional resonances were
demonstrated experimentally and computationally for
EGAMs [8,21]. For the excitation of the secondary mode
shown in Fig. 1, the particles with f, ~ 100 kHz satisfy the
linear resonance condition for the primary mode with f =
100 kHz and the nonlinear resonance condition for the
secondary mode with f = 50 kHz and K = 2. These reso-
nant particles may transfer energy from the primary mode to
the secondary mode, which can be inferred from the decay of
the primary mode when the secondary mode is excited.

In summary, three conclusions are presented in this
Letter. First, the simulation of EGAM in the realistic three-
dimensional equilibrium is obtained for the first time, and the
results are very similar to the experimental observation. It is
found that the poloidal velocity oscillation is a combination
of m/n =0/0 (strong), 1/0 (medium), and 2/10 (weak)
components. This is caused by the LHD configuration and is
different than the tokamak case. Second, the chirping EGAM
and the associated half-frequency secondary mode are
reproduced with the three-dimensional model and realistic
parameters for the first time. The results are good validations
of the simulation. It is found that the phase difference
between 6Py, and 6Py, is z for the secondary mode. The
0Ppuy and 6P| are in antiphase, and they cancel each other
out. Thus, the frequency of the secondary mode is much
lower than the primary mode. And third, it is found that the
fluid nonlinearity does not affect the excitation of the
secondary mode, and the secondary mode is excited by
the energetic particles that can resonate with both the
primary and secondary modes. This conclusion is confirmed
by the linearized MHD run and by the analysis of the energy
transfer from energetic particles to the mode. Our conclusion
is different from that of Ref. [22]. However, we would like to
emphasize that our simulations are based on the fundamental
physics equations with the realistic condition.

We have found that the secondary mode is excited by
energetic particles that satisfy both the linear and nonlinear
resonance conditions for the primary and secondary modes,
respectively. The overlap of linear and nonlinear resonan-
ces is brought about by the spontaneous frequency chirping
of the primary mode, and it leads to the emergence of
stochasticity and the sudden excitation of the secondary
mode. The overlap of linear and nonlinear resonances can
be ubiquitous in fusion plasmas and important for plasma
confinement and energy channeling.

Numerical computations were performed on the Plasma
Simulator of NIFS with the support and under the auspices
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