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We present a class of holographic massive gravity models that realize a spontaneous breaking of
translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear
modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient
theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of
both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application
of the model, we compute the temperature dependence of the shear modulus and find that it features a
glasslike melting transition.
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Introduction.—In the last decade the gauge/gravity dual-
ity has proven to be an efficient tool to tackle condensed
matter questions in the context of strongly coupled physics
[1–3]. Despite the various directions and applications
pursued, a fundamental piece of the condensed matter
phenomenology is still missing in the holographic puzzle:
a concrete, simple, and clear realization of phonons with
standard properties as dictated by elasticity theory; see e.g.
Ref. [4]. With the present Letter we shall rectify this
deficiency by presenting a class of simple holographic
models featuring transverse phonons and elastic properties.
Recently, there has been significant progress towards

including translational symmetry breaking, momentum
dissipation, and their consequences on transport in the
context of holography [5,6] (see Ref. [1] for references).
Within that framework, Massive gravity (MG) stands out as
a convenient and flexible gravity dual where the momen-
tum relaxation time is set by the graviton mass τ−1rel ∼m2

g
[7–9]. The question regarding the nature of the translational
symmetry breaking, i.e., whether it occurs in a spontaneous

or explicit manner, is, however, subtle. According to the
holographic dictionary, the answer lies in the asymptotic
UV behavior of the bulk fields breaking the translational
invariance [10]. In the case of massive gravity this relates to
the radial dependence of the graviton mass, which was
shown to admit a broad range of possible profiles mgðuÞ
compatible with theoretical consistency [11,12].
A first evidence confirming this logic was presented in

Ref. [13], where gapped transverse phonons were identi-
fied, with the size of the gap being directly related to the
asymptotic behavior of the graviton mass. This suggests a
clear way to realize gapless phonons by ensuring a rapid
enough decay of mgðuÞ towards the boundary.
In this Letter we consider a subclass of the holographic

MG models introduced in Refs. [11,12] exhibiting such
behavior. We then demonstrate explicitly how it can attain a
spontaneous symmetry breaking (SSB) of translations and
provide a realization of massless phonons, i.e., the corre-
sponding Goldstone bosons. The resulting gapless modes
show properties identical to the transverse phonons in
solids. In particular, we find that their speed of propagation
is in perfect agreement with the expectations from elasticity
theory [14]. To the best of our knowledge this is the first
time that transverse phonons are realized within hologra-
phy, with a sharp and clear relation to the elastic moduli as
dictated by standard elasticity theory. Previous works with
partial success in this direction are listed in Ref. [15].
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Despite the fact that the physics of phonon excitations
and elasticity in weakly coupled solids is well known, their
holographic realization has remained absent for more than a
decade. We believe that the present work will clarify how
the phonons can be encoded in the holographic models.
Beyond the AdS=CFT dictionary, this will certainly con-
tribute to a better understanding of the role of phonons, and
more generally of spontaneous and explicit breaking of
translational invariance, especially in quantum critical or in
strongly coupled materials. In addition, this is of relevance
for metal-insulator transitions and in disordered materials,
where the gapping or pinning of phonons plays a crucial
role. Pinning and its effects on transport phenomena can be
readily modeled using the holographic methods presented
in this work. Finally, let us remark that these models allow
for a concrete derivation of the hydrodynamics of certain
ordered phases of matter and their related viscoelastic
transport coefficients at strong coupling.
Holographic setup.—We consider generic solid holo-

graphic massive gravity models [11,12]:

S ¼ M2
P

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
2
þ 3

l2
−m2VðXÞ − 1

4
F2

�
; ð1Þ

with X ≡ 1
2
gμν∂μϕ

I∂νϕ
I and F2 ¼ FμνFμν. We study 4D

AdS black brane geometries of the form

ds2 ¼ l2

u2

�
du2

fðuÞ − fðuÞdt2 þ dx2 þ dy2
�
; ð2Þ

where u ∈ ½0; uh� is the radial holographic direction span-
ning from the boundary to the horizon, defined through
fðuhÞ ¼ 0, and l is the AdS radius.
The ϕI scalars are the Stückelberg fields admitting a

radially constant profile ϕI ¼ xI with I ¼ x, y. This is an
exact solution of the system due to the shift symmetry. In
the dual picture these fields represent scalar operators
breaking the translational invariance because of the explicit
dependence on the spatial coordinates. In this Letter we
shall consider benchmarks models of the type

VðXÞ ¼ Xn: ð3Þ
These are referred to as massive gravity theories because,
among other reasons, themetric perturbations acquire amass
term given bym2

gðuÞ ¼ 2m2XV 0 with the background value
for X ¼ u2=l2. The absence of ghost and gradient insta-
bilities enforces the conditions V 0>0 and c2ðbulkÞ¼1þ
XV 00=V 0>0which constrain the power to satisfy n > 0 [11].
In the following we assume standard quantization.

This means that the near-boundary leading mode of the
Stückelberg fields, ϕI

ðlÞ, sets the source for the dual operator
OI breaking the translational invariance. The expectation
value hOIi is in turn set by the subleading mode ϕI

ðsÞ.
For potentials of the type (3) the asymptotic expansion of

the Stückelberg scalars close to the UV boundary at u ¼ 0
is given by

ϕIðxμÞ ¼ ϕI
ð0Þðt; xiÞ þ ϕI

ð1Þðt; xiÞu5−2n þ…; ð4Þ

where ϕI
ð0Þðt; xiÞ ¼ xI ≠ 0 on the bulk solution. Depending

on the value of n one can then distinguish two cases. If
n < 5=2 then ϕI

ð0Þ is the leading term in the near-boundary

expansion and corresponds to the source, i.e., ϕI
ðlÞ ¼ xI . As

a consequence, the dual QFT contains an explicit breaking
term which gives rise to a finite relaxation time τ−1rel ∼m2

g

for the momentum operator [8]. This is the case for all the
potentials VðXÞ that have so far been considered in the
literature [11–13].
The main observation is that if instead one considers a

potential of the form VðXÞ ¼ Xn with a sufficiently large
n > 5=2, the mode ϕI

ð0Þ becomes subleading in the boun-

dary expansion (4). Hence, for n > 5=2 the solution
ϕI ¼ xI for the scalar bulk fields gives rise to an expect-
ation value hOIi ≠ 0 for its dual operator while its source
vanishes, leading to the SSB pattern [24]. Intuitively such a
condition corresponds to demanding that the radially
dependent graviton mass mgðuÞ is large at the horizon
and quickly vanishes at the boundary, as already suggested
in Refs. [11,13].
Let us now focus on an important feature of the bench-

mark models (3). For n ≠ 1—our main focus in this work—
the kinetic term for the Stückelberg fields ϕI is noncanoni-
cal: they do not have a quadratic action. This implies that
their quantization is at best nonstandard, and thus the theory
is strongly coupled around the trivial solution ϕI ¼ const.
For this reason, the interpretation of this classical solution as
a valid quantum vacuum is quite dubious.
Instead, around the nontrivial solution ϕI ¼ xI the

Stückelberg fields do acquire a standard quadratic kinetic
term, at least in part of the geometry. To illustrate this, it
suffices to consider the Stückelberg fields in the transverse
sector. Separating them into background and perturbations
as ϕI ¼ xI þ πI , with ∂iπ

i ¼ 0, one can easily expand the
Lagrangian in powers of π’s to find

−M2
Pm

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
V 0ðX̄ÞXπ þ

1

2
V 00ðX̄ÞX2

π þ…

�
;

where X̄ denotes the background value, u2=l2, and
Xπ ≡ 1

2
gμν∂μπ

I∂νπ
I . One can estimate the strong coupling

scale in this sector by going to canonical normalization
πc ¼ MPm

ffiffiffiffiffi
V 0p
π and finding the scale suppressing the

dimension-8 operator ð∂πcÞ4=ΛðuÞ4. The resulting strong
coupling scale is radial dependent and is given by
ΛðuÞ4 ∼ ðV 02=V 00ÞM2

Pm
2. For our benchmark models (3)

with generic n this gives

ΛðuÞ ∼ ðmMPÞ1=2
�
u
l

�
n=2

: ð5Þ

PHYSICAL REVIEW LETTERS 120, 171602 (2018)

171602-2



Thus, for a fixed m2 the energy scale above which the
transverse field perturbations πI become strongly coupled
varies with the radial distance u.
Since ΛðuÞ asymptotically vanishes towards the AdS

boundary located at u ¼ 0, then in practice our bulk EFT is
tractable only down to a certain radius u� as depicted in
Fig. 1. In the dual CFT the scale u� clearly corresponds to
some UV cutoff. This is a very welcome feature since we do
expect the strength of phonon self-interactions to increase
towards high energies, as in weakly coupled materials; see,
e.g., Ref. [26]. It is therefore tempting to relate the scale u�
with the lattice spacing scale a, setting an upper cutoff to
the phonons frequency. In physical terms this cutoff
indicates that the phononic vibrational modes cannot be
excited above the so-called Debye temperature [27].
Therefore, it is neither surprising nor problematic to have
a UV cutoff in our gravitational theory; on the contrary, it is
an important physical property making these models more
realistic. How small u� is depends on how small we can
tolerate the Stückelberg strong coupling scale Λ� anywhere
in the bulk. Notice that this is a new parameter in the model,
independent from the parameters appearing in Eq. (1) [28].
There are two basic and obvious constraints in choosing

Λ�. First, Λ� must be bigger than the typical gradients, that
is,Λ� ≫ 1=l. Second, in order to still be able to read off the
holographic correlators from the decay modes of the bulk
fields, we also need the UV cutoff u� to be close to the AdS
boundary. In other words, we must ensure that the ratio
u�=l is sufficiently small.
Thus, we can write Λ� ¼ ðmMPÞ1=2ðu�=lÞn=2 and think

of u�=l as a fixed small number. Requiring that Λ�l≳ 1
then gives

MPl≳ 1

ml

�
u�
l

�
−n
:

Note that MPl has to be large for the employed semi-
classical treatment of the gravitational side to be valid.
Hence, for any given small u�=l and any n, we can satisfy
the two constraints with ml of order one. Once these
conditions are met, then these constructions allow us to
model in a controlled way the physics of phonons in critical
and conformal solids.
Results.—Phonons and elasticity: In solids translational

invariance is spontaneously broken. The corresponding
Goldstone bosons—the phonons—play a crucial role in
the description of the low energy physics and the elastic
properties of the materials. Their dynamics can be entirely

captured via effective field theory methods [26,29].
Depending on the direction of propagation with respect to
the deformation of the medium they can be classified into
longitudinal and transverse phonons; in this Letter we shall
focus on the latter. The presence of propagating transverse
phonons, also called the shear sound, is a characteristic
property of solids and provides a clear physical distinction
from fluids.
The dispersion relation for the transverse phonons takes

the simple form [4]

ω ¼ cTk − iDk2; ð6Þ
where cT is the speed of propagation and D is the
momentum diffusion constant, proportional to the finite
viscosity η of the medium. In the absence of explicit
breaking, neither mass gap nor damping is present; i.e., at
low k the real part of the frequency depends linearly on k,
as shown in Eq. (6) [30]. Moreover, note that in the absence
of translational symmetry breaking the mode is purely
diffusive, with cT ¼ 0. In relativistic systems, the velocity
is set to be [4,32–34]

c2T ¼ G
χPP

; ð7Þ

where G is the shear elastic modulus and χPP is the
momentum susceptibility. Both of these quantities can be
extracted via the Kubo formulas from the Txy (shear stress)
and Ttx (momentum) retarded correlators as follows:

G≡ GðRÞ
TxyTxy

jω;k¼0; χPP ≡ GðRÞ
TtxTtx

jω;k¼0: ð8Þ

The momentum susceptibility coincides with [1],

χPP ¼ T00 þ Txx ¼ ϵþ P ¼ 3

2
ϵ; ð9Þ

where ϵ is the energy density and P is the mechanical
pressure [35].
In order to confirm the presence of transverse phonons

and verify Eq. (7), we find the spectrum of the quasinormal
modes (QNMs) of the system in the transverse sector. Here
we have done it explicitly for potentials of the type VðXÞ ¼
Xn for several values of n ∈ ½3–8� including also noninteger
values [37]. For concreteness, some of the following plots
only show specific realizations; nevertheless, the qualitative
conclusions drawn from the data are the same in all cases.
In Fig. 2 we show the spectrum of QNMs at zero

momentum and different temperatures for n ¼ 5. We find a
QNM located at zero frequency, corresponding to a gapless
quasiparticle, the putative phonon in our holographic
model. Moreover, we note that for any temperature the
next QNM is already highly damped.
Next, we analyze the QNM spectrum at finite momen-

tum k. In Fig. 3 we show the behavior of both its real and

0 uh
u

u∗ a

weakly coupled Λ < Λ∗

FIG. 1. A sketch of the validity of the EFT in the bulk and its
dual interpretation.
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imaginary parts. As evident from Fig. 3, this quasinormal
mode satisfies the expected dispersion relation of Eq. (6)
[38]. Hence it is neither attenuated nor gapped. We note that
the speed cT decreases with increasing temperature (see
Fig. 4) while the diffusion constant D increases with T=m.
In particular, at T=m ¼ 0 the diffusion constant and the
viscosity vanish D ¼ η ¼ 0 (see also Refs. [36,39]) and
the elastic modulus G is maximal. In turn, at T=m ≫ 1 the
viscosity is maximal and the elastic modulus is zero. In
other words, the physics interpolates from a solid behavior
at zero temperature to a fluid behavior at high temperatures
in a continuous way, exhibiting viscoelastic features in the
intermediate temperature range. This feature is qualitatively
similar to a glassy transition typical to viscoelastic materi-
als [40–42], as shown in the inset of Fig. 4 and explained in
more detail in the Supplemental Material [43]. Although it
is to be expected that the system interpolates between a
fluid and a “solid,” it is worth noting that the transition is
smooth.
Crucially, as shown in Fig. 4, the sound speed of the

transverse phonons is in perfect agreement with the expect-
ations from the elastic theory given in Eq. (7). We note that
the value of the velocity in the zero-temperature limit is
always subluminal, but not universal. Moreover, we find
that for n ≥ 3 the sound speed satisfies the bound c2T ≤ 1=2
arising for conformal solids [23].
Conductivity and viscosity.—By introducing a finite

charge density ρ we are able to analyze also the electric
optical conductivity σðωÞ of our system. In the presence of
only SSB its low frequency expansion is expected to be
given by [1]

σðωÞ ¼ σQ þ ρ2

χPP

�
δðωÞ þ i

ω

�
; ð10Þ

where σQ is the so-called incoherent conductivity (see
Refs. [31,46]). Notice that because of the absence of a finite
momentum relaxation time τrel, or, equivalently, of an
explicit breaking mechanism, the dc conductivity is infinite.
We have computed the optical conductivity of our class

of models via the Kubo formula:

σðωÞ ¼ 1

iω
GðRÞ
JJ ðωÞjk¼0: ð11Þ

As shown in Fig. 5, the low frequency behavior of the
conductivity agrees with the form presented in Eq. (10);
also the Drude weight is in perfect agreement with the
hydrodynamics expectations. This allows us to confidently
claim that our setup Eq. (1) does indeed represent a dual of
the SSB of translational invariance, together with all its
physical manifestations.
Finally, let us comment on the momentum diffusion

constant D appearing in the dispersion relation (6) and
related to the hydrodynamical viscosity η by D ¼ η=χPP.

FIG. 3. Real and imaginary parts of the frequency of the lowest
QNM for VðXÞ ¼ X5 for T=m ∈ ½0.7 − 1.7� (blue–red).

FIG. 2. The quasinormal spectrum for VðXÞ ¼ X5 at zero
momentum for T=m ∈ ½0.01; 1.05� (blue–red).

FIG. 4. Comparison of the velocity extracted from the QNMs
(black dots) and the velocity computed from the elasticity (solid
lines) for n ∈ ½3 − 8� (green–orange). Inset: The dependence of
the shear elastic modulus on m=T in log-log scale. The fall-off at
large temperatures G ∼m2T3−2n is evident. See the Supplemental
Material [43].

FIG. 5. Imaginary part of σðωÞ for VðXÞ ¼ X5 at μ ¼ 1 and
different T=m ¼ 1, 0.6, 0.4, 0.2. In the inset the Drude weight,
ρ2=χPP, is shown.
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We find that η does not agree with the value extracted via
the Kubo formula:

η� ¼ −lim
ω→0

1

ω
ImGðRÞ

TxyTxy
ðk ¼ 0Þ: ð12Þ

This was already noticed for the explicit breaking case with
n ¼ 1 in Refs. [47,48]. This point has been further
elaborated recently in [49]. Here we confirm this disagree-
ment between the two viscosities for generic values of n.
Conclusions.—We present a simple holographic gravity

dual for phonons in strongly coupled materials, whose
properties are in perfect agreement with elasticity theory.
Our results open a new window for the study of strongly
coupled solids via the AdS=CFT methods. In the process,
we also sharpen and quantify the connection between
elastic theory and massive gravity [7,11,12,50].
The future possibilities are diverse. One direction of

clear interest is to compute and characterize the viscoelastic
response of these models in more detail. This will clarify
the connection with the known glassy melting transitions
[40–42]. In this regard it seems relevant to study the
response under time-dependent stresses as it could shed
light on further signatures typical for amorphous and
viscoelastic materials like slow relaxation and aging [51]
(see, e.g., Ref. [52] for previous works).
In addition, it would be compelling to elucidate any

possible relation to the so-called quantum critical elastic-
ity [53,54].
Finally, these methods can be used to model the optical

transport properties of the strange and bad metals in terms
of the interplay between the explicit and spontaneous
breaking of translations [49,55].
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[11] M. Baggioli and O. Pujolàs, Phys. Rev. Lett. 114, 251602

(2015).
[12] L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolas, J.

High Energy Phys. 02 (2016) 114.
[13] L. Alberte, M. Ammon, M. Baggioli, A. Jiménez, and O.
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