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We study nonlinear spin motion in one-dimensional magnetic chains. We find significant differences
from the classic Fermi-Pasta-Ulam (FPU) problem examining nonlinear elastic motion in a chain. We find
that FPU behavior, the transfer of energy among low order eigenmodes, does not occur in magnetic systems
with only exchange and external fields, but does exist if a uniaxial anisotropy is also present. The FPU
behavior may be altered or turned off through the magnitude and orientation of an external magnetic field.
A realistic micromagnetic model shows such behavior could be measurable.
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The Fermi-Pasta-Ulam [1] (FPU) problem was a cata-
lytic study that simultaneously began numerical experi-
ments and gave significant insight and stimulus to
nonlinear physics. Performed more than 60 years ago,
FPU addressed a fundamental issue in nonlinear physics
through the study of large-amplitude vibrational motion of
a one-dimensional linear chain. In a linear harmonic
system, one expects that if energy is put into one eigen-
mode, the system will reach the ergodic limit; i.e., the
energy will eventually be spread out equally through all the
eigenmodes (through damping or small perturbations).
What FPU found, in contrast, for a nonlinear system
was very different. Energy added to one mode was trans-
ferred to nearby modes in frequency, but then the system
would nearly completely return to the original mode as
time progressed. Ultimately, the energy remained in a
small number of modes, cycling between these modes
with a time that typically was several thousand periods of
the original motion.
The elastic FPU problem has created a vast area of

research [2] with various explanations for the effects
seen. The FPU recurrence was explained by Zabusky
and Kruskal through soliton dynamics. [3] They showed
that, in the continuum limit, the FPU problem was related
to the Korteweg–de Vries equation and that a large
amplitude periodic wave would decompose into solitons
with different speeds. Collisions of the fast and slow
solitons lead to a periodic reconstruction of the initial state.
Surprisingly, there are no theoretical studies of FPU-

like behavior for magnetic systems despite fundamental
differences between magnetic excitations and elastic vibra-
tions. In contrast to the vibrational problem, spin waves
have an inherent nonlinearity that is dependent on the
precession angles of the spins. The magnetic system also
has additional parameters, such as the magnitude and
direction of an external magnetic field, that allow tunable

variations in nonlinear behavior, a possibility not found in
the elastic system. We do note that there has been one
experimental study of FPU recurrence in a magnetic system
employing an active-feedback-ring containing a YIG film
[4] and other experimental and theoretical studies of
nonlinear magnetic dynamics [5–20].
There is another essential difference between the mag-

netic and elastic systems. In the classic elastic problem the
dispersion relation in the small wave vector limit is ω ¼ ck,
so that doubling the wave vector k results in a doubled
frequency of 2ω. This allows an initial mode to create
doubled frequency modes in a resonant way (for a quadratic
nonlinearity). In contrast, the magnetic system has a much
more complex dispersion relation, which does not generally
lead to resonance enhancement of other modes. With this as
background, it is not obvious if FPU behavior can occur in
a magnetic system.
In this Letter we explore whether FPU-like behavior can

emerge for a set of spins in a quasi-one-dimensional
system. We find the following: (i) FPU behavior does
indeed occur in some magnetic systems—particularly
systems with an effective uniaxial anisotropy. (ii) The
FPU behavior may be altered or even turned on and off
through the magnitude and orientation of an external
magnetic field. (iii) Unlike the FPU problem, the magnetic
system inherently contains both quadratic and cubic non-
linear terms in the equations of motion. The different types
of nonlinearity lead to fundamental differences in the
solutions, for example, whether the solutions preserve
the spatial symmetry of the initial state [21].
To begin, we use a quasi one-dimensional model, a set

of N exchange-coupled thin films, for the spin system as
illustrated in Fig. 1(a). The films are effectively equivalent
to a linear chain of spins, except with the addition of a
demagnetizing field in the x direction. The equations of
motion are given by
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dMðiÞ
dt

¼ −jγjMðiÞ × fHoẑ − 4πMxðiÞx̂
þ J½Mðiþ 1Þ þMði − 1Þ�g; ð1Þ

where MðiÞ is the magnetization for the ith film, jγj ¼
18.22 rad=ðns kOeÞ is the gyromagnetic ratio, Ho is the
applied magnetic field, −4πMxðiÞx̂ is the demagnetizing
field for a thin film, M is the magnetization with

jMj ¼ 1.75 kG, and J is the exchange coupling constant
where JM ¼ 20 kOe.
The equations of motion for the components are

dMxðiÞ
dt

¼ −jγjfJ½MyðiÞMzðiþ 1Þ þMyðiÞMzði − 1Þ
−MzðiÞMyðiþ 1Þ −MzðiÞMyði − 1Þ�
þMyðiÞHog; ð2aÞ

dMyðiÞ
dt

¼ −jγjfJ½MzðiÞMxðiþ 1Þ þMzðiÞMxði − 1Þ
−MxðiÞMzðiþ 1Þ −MxðiÞMzði − 1Þ�
−MxðiÞHo − 4πMzðiÞMxðiÞg; ð2bÞ

dMzðiÞ
dt

¼ −jγjfJ½MxðiÞMyðiþ 1Þ þMxðiÞMyði − 1Þ
−MyðiÞMxðiþ 1Þ −MyðiÞMxði − 1Þ�
þ 4πMxðiÞMyðiÞg: ð2cÞ

The system is given an initial configuration and the
equations are iterated forward in time numerically using
Runge-Kutta integration. The time step is Δt ¼ 10−5 ns
with typical run times over 350 ns. Individual runs with
Δt ¼ 10−6 ns are used to check the results. As in the FPU
study, we initially take the damping to be zero; however, the
effects of damping are discussed at the end.
To examine the question raised by FPU, i.e., whether the

system becomes ergodic or whether there is a persistent
exchange of energy between the lower eigenstates, we
follow the FPU example and start the system in a low order
magnetic linear eigenstate. An initial eigenstate of order n
is given by

Myði; t ¼ 0Þ
M

¼ A cos

�
πn½i − 1�
N − 1

�
; Mxði; 0Þ ¼ 0;

Mzði; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Mxði; 0Þ2 −Myði; 0Þ2

q
; ð3Þ

where A is the amplitude of the initial excitation, i is the site
index, and n is the mode number. The spins at the outer
edges of the chain are unpinned, and each only has one
nearest neighbor interacting via exchange. We characterize
the resulting motion by projecting the motion of the
magnetization at any time t onto a set of linear eigenstates.

anðtÞ ¼
1

N

�����
XN
i¼1

Myði; tÞ
M

cos

�
πn½i − 1�
N − 1

������; ð4Þ

where the mode number is again given by n.
As an example, if we take an initial state with n ¼ 1,

the total number of sites is N ¼ 512, and Ho ¼ 5 kOe.
To characterize the time evolution [22], we project the

FIG. 1. Time evolution of the system started in the n ¼ 1 state
but with different initial amplitudes. (a) A ¼ 0.001 and the
system stays in the n ¼ 1 mode. (b) A ¼ 0.1 and the n ¼ 1
mode redistributes to multiple other modes but repeatedly goes
back into mode 1. (c) A ¼ 0.15 and the simple periodic behavior
seen in (b) has become much more complex (d) A ¼ 0.5 and the
time evolution shows strongly nonlinear behavior where the
system is approaching ergodicity.
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configuration at any time onto the linear eigenmodes. If the
initial amplitude A is small, the magnetic dynamics shows a
characteristically linear behavior in that it stays in the initial
state, n ¼ 1, as seen in Fig. 1(a). In contrast, with a larger
initial amplitude [23], [Fig. 1(b)], the inherent nonlinearity
of the magnetic system becomes important and there is a
recurring energy transfer from the initial mode to other
modes in the system and back to the initial mode [24,25].
As the initial amplitude is increased further, Fig. 1(c), the
simple periodic behavior found in Fig. 1(b) has disap-
peared, and the resulting motion is much more complex.
The final case, Fig. 1(d), shows the system has crossed the
threshold separating FPU-like behavior from the expected
chaotic behavior [26] and the onset of ergodicity [27]. This
behavior is similar to that found in the elastic FPU problem,
but now in a magnetic system. We were unable to find
FPU-like behavior in systems with only exchange fields
and an external magnetic field. The FPU behavior found
above required an effective uniaxial anisotropy, in this case
provided by the demagnetizing field.
A significant difference between the elastic and magnetic

FPU systems is the nature of the nonlinearity. In the elastic
FPU problem, the nonlinearity is essentially added in an
arbitrary way. The FPU paper added both quadratic and
cubic displacement terms to the elastic equations of motion.
With only a cubic term present, the symmetry of the initial
mode (odd or even about the midpoint) is preserved for all
the generated modes. When quadratic terms are present,
there is no symmetry requirement. In contrast, the magnetic
system has inherent nonlinearity. To find the lowest order
terms in the nonlinearity one expands mz as

MzðiÞ ≅ M

�
1 − 1

2

�
MxðiÞ2 þMyðiÞ2

M2

�
þ � � �

�
ð5Þ

in the equations of motion. One finds that Eqs. (2a) and (2b)
have a cubic nonlinearity while Eq. (2c) has a quadratic
nonlinearity. Our numerical results emphasize that both
terms play an important role. At lower amplitudes we find
that the cubic terms play the primary role, and symmetry
is preserved. For example, a system initially in mode 1
(a mode odd about the midpoint of the chain) primarily
decays into modes 3, 5, and 7 [see Fig. 1(b)], which are
all odd as well. For larger amplitudes [see Fig. 1(d)] both
even and odd modes are generated. We note that the most
important cubic terms are those associated with the
demagnetizing fields, again emphasizing the importance
of these terms for the magnetic case.
As stated, the magnetic system allows a dynamic tuning

by varying the strength or direction of an external field. We
explore the effect of changing the strength of the external
magnetic field in Fig. 2. We set the initial condition to
contain 95% of the 0th mode and 5% of the mode n ¼ 1,
with N ¼ 512 spins and an amplitude of A ¼ 0.1. (Use
of 100% of the n ¼ 0 mode leads to numerical issues

where the results depend on the initial conditions and
time step because of the extremely high symmetry of the
initial state [28].)
With the external field along the z axis and at the smallest

field, Fig. 2(a), the system simply remains in the initial state.
As the field is increased, Figs. 2(b) and 2(c), FPU-like
behavior emerges in that the initial state transfers to other
states in a simple periodic pattern where only low-order even
modes are involved. When the field is increased to 10 kOe,
Fig. 2(c), the onset of FPU-like behavior occurs earlier.
There is a noticeably faster interchange between the modes
at higher magnetic fields. The results imply that changing an
external field can serve as a stabilizer or moderator. This is
similar to the induction period previously found by Hirooka
and Saito in the elastic case [29,30]. However, in the
magnetic system, changing the external field strength
effectively mediates the nonlinearity, in comparison to the
introduction of an artificial nonlinearity parameter used in
the earlier work by Hirooka and Saito.
In Fig. 3 we explore the effect of changing the direction

of the applied magnetic field. The results in Fig. 3(a) are
qualitatively similar to those seen in Fig. 1(c), even though
the field is increased to Ho ¼ 25 kOe. A field with the
same magnitude applied along x in Fig. 1(b) (out-of-plane
field) is sufficient to saturate the system along the x axis.
The resulting behavior, as seen in Fig. 3(b), is no longer
periodic, although there are still times where the system
reverts almost entirely into the n ¼ 1 mode. Thus, the FPU
behavior is significantly tunable by the direction of the
static applied field.
Although this is a theoretical Letter, we discuss the

possibility of experimental measurements. The calculations
above assume, as in the original FPU paper, that damping
is unimportant. Real magnetic systems, of course, have

FIG. 2. Mode projections for identical systems with different
applied fields. The initial state contains 95% n ¼ 0 and 5% n ¼ 1
and A ¼ 0.1 The time evolution in (b) and (c) shows FPU-like
behavior.
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damping, characterized by a dimensionless parameter α,
which can play an important role. Recently Heusler
compounds have been investigated [31] with values of α
near 0.001. Values of α near 10−4 have been measured in
CoFe alloys [32]. Bulk samples of yittrium iron garnet
(YIG) have very low damping α ¼ 10−5 and even thin YIG
films [33,34] can have values on the order of α ¼ 2.7 ×
10−4 or 0.9 × 10−4. With this in mind, Fig. 4 shows results
for an n ¼ 1 initial state with a damping value of α ¼ 10−4
[all other parameters are the same as in Fig. 1(b)]. Despite

the damping, there is a clear FPU-like interchange of
energy between the lowest modes [all odd modes, as
in Fig. 1(b)].
The system considered here, as illustrated in Fig. 1(a), is

not the only possible configuration for experimentally
studying magnetic FPU-like behavior. We have also studied
whether FPU-like behavior can occur in a narrow stripe
with a realistic micromagnetic model. The parameters used
were A ¼ 0.1, M ¼ 1.7 kG, Aex ¼ 2.5 × 10−6 erg=cm,
Ho ¼ 25 kOe in the x direction, Δt ¼ 5 × 10−5 ns, and
α ¼ 1 × 10−5. We used cell configurations of 1 × 1 × 256
(256 cells in the z direction) and cell sizes of 5 × 5 × 5 nm.
Here, as previously, the anisotropy is introduced by the
demagnetizing fields, although through a different orienta-
tion. Starting in the n ¼ 1 mode, we found an interchange
in energy between the n ¼ 1 and n ¼ 3 modes with time,
similar to that shown in Fig. 1(b). The recurrence time was
about 10 ns.
In summary, magnetic systems can have FPU-like

behavior under certain conditions—one of the transverse
directions is effectively a hard axis. The magnetic FPU
behavior is highly tunable, in contrast to the elastic case.
Finally, we note that the study of the FPU problem in elastic
systems lead to an important connection between solitons
and FPU behavior. This leads one to speculate that the
study of magnetic FPU behavior may also lead to an
enhanced understanding of solitons in realistic magnetic
systems.
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