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The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that
causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long
been attributed to the sheet’s interaction with the surrounding gas phase. Here, we present experimental
evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads
out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the
predictions of a recent theory that accounts for the sheet’s thinning but ignores aerodynamic interactions.
We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution
but also enable more efficient designs of atomizers.
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Atomization is the process of transition of a compact
liquid mass to dispersed drops, and it involves a transient
stage of unstable liquid jets or sheets [1]. The process is
important industrially, with applications in areas as diverse
as combustion [2], food and pharmaceuticals [3], agricul-
ture [4,5], and fire protection [4]. One of the most common
techniques to atomize liquid is to produce high-speed, thin
liquid sheets either by impinging a liquid jet on an inclined
surface, such as in a floodjet nozzle, or by ejecting the
liquid through a thin slit, such as in a fan spray nozzle [1,6].
In either case, the sheet expands radially outward from the
point of impingement or the nozzle exit, flaps violently, and
atomizes within a short distance from the tip of the nozzle.
While the final stages of sheet breakup are complex,
involving highly deformed interfaces and turbulent flows,
the first estimate of the drop-size distribution is obtained
from the linear stability analysis of the thin moving
sheet [6].
To this end, Squire [7] was the first to analyze the stability

by considering the inviscid flow of a two-dimensional film
of a constant thickness in an inviscid gas phase. It was shown
that the oscillations of the sheet are a combination of
varicose(symmetric) and sinuous(antisymmetric) modes.
The analysis focused on the latter since the degree of
instability for long waves of thin water sheets moving in
air is much larger for the sinuous mode compared to the
varicose mode. The instability is caused by the inertia of
the liquid while surface tension (σ) stabilizes it, resulting in
one of the necessary conditions for instability, Weh ≡
ρlU2h=σ > 2. Here, Weh is the Weber number calculated
with respect to the film thickness (h), U is the speed of the
moving liquid sheet, and ρl is the density of the liquid phase.
The temporal growth rate of the sinuous wave can be

estimated via a simple scaling analysis [8]. In the reference
frame of the moving sheet, a small sinuous perturbation of
amplitude y and wavelength λ, surrounded by a gas phase

of density, ρg, results in a pressure difference of ρgU2y=λ
between the peak and the trough of the deformed sheet.
This pressure difference causes the initial perturbation to
grow, thereby accelerating the trough and the peak in
opposite directions. Equating the mass times acceleration
of a section of trough (or peak), ρlhÿ, to the pressure
difference, results in the scaling for the growth rate of a
sinuous wave, U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðρg=ρlÞð1=hλÞ
p

, with the dot represent-
ing the time derivative. Thus, the growth of the instability is
proportional to the square root of the ratio of the fluid
densities and is inversely proportional to the square root of
the thickness. In absence of a gas phase, the constant
thickness sheet is always stable.
The aforementioned analysis of Squire [7] has been used

for more than seven decades to determine the stability of not
only constant thickness sheets but also for radially expand-
ing sheets, where the thickness decreases inversely with the
radial distance (r) from the nozzle exit [8–19]. In fact, Squire
[7] himself analyzed the atomization of radially expanding,
conical sheets using this theory by stating that, “It is not
practicable to investigate the stability of a conical film of
variable thickness, and it is considered that most of the
important features are included in the two-dimensional
problem.” However, problems with assuming a constant
thickness film for a radially thinning sheet have been
recognized, but progress has been prevented by the
“theoretical difficulties” [10] of accounting for a thinning
geometry. As a result, even recent studies have adopted the
“locally parallel” assumption on the grounds that the slope
of thickness scales as 1=r2, which becomes vanishingly
small a few jet diameters away from the jet. Consequently,
the correction is considered to be only a second order effect,
thereby permitting a constant thickness assumption [15–18].
The aforementioned difficulty of accounting theoreti-

cally for the thinning geometry was overcome recently in a
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new study [20], which showed that sinuous waves grow
spatially, even in the absence of the surrounding gas phase.
The growth was attributed to the thinning of the sheet
although aerodynamic interactions were expected to domi-
nate at large liquid speeds [21,22]. In this Letter, we present
conclusive experimental evidence to the contrary and show
that, in the linear regime and for up to atmospheric
pressures, the dynamics of a radially expanding sheet are
entirely dominated by its thinning in the radial direction,
even at very large liquid speeds, with negligible influence
of the surrounding gas phase.
The experimental setup, illustrated in Fig. 1, is com-

prised of a laminar jet emanating from a vertical converging
borosilicate glass nozzle of exit jet diameter (d) 2.5 mm and
impacting on a solid stainless cylinder of diameter 9 mm
placed below it. On impact, the liquid jet spreads out
radially into a thin liquid sheet [18,23].
Past studies have shown that the sheet thickness varies

inversely with the radial distance (r) from the impingement
point, h ¼ d2=8r, which is obtained by balancing the mass
of the incoming liquid from the jet, πd2U=4, with the mass
of the outgoing liquid at a radial location r far from the
point of impingement, 2πrUh [24–26]. In the absence of
any disturbance, a balance of the momentum pushing the
liquid out at the sheet’s edge, ρlU22πRh, against the
surface tension force preventing the expansion, 2σ2πR,
gives the diameter of the sheet, 2R=d ¼ ρlU2d=8σ ≡
Wed=8 [25]. At low Wed < 700, termed as the smooth
regime, the sheet surface remains smooth, and the sheet
radius increases linearly with Wed, in agreement with the
predictions of the simple momentum balance equation
[Fig. 1(c)]. However, as Wed is increased further, the sheet

increasingly becomes disturbed, and it flaps akin to a flag.
Consequently, the sheet radius reduces with increasingWed
in the flapping regime, which has been attributed to the
aerodynamic interactions [9].
The surface waves on the liquid sheet were determined

via an optical arrangement comprised of a diode laser and a
cube beam splitter fixed vertically below it [Fig. 1(b)]. This
arrangement was placed on a motorized traverse, so as to
scan deflections along the radial direction. The technique is
very sensitive to surface perturbations, and it has been
shown to measure surface wave amplitudes as low as 10 nm
[27,28]. Previous experiments have shown that the ampli-
tude of the varicose waves (or thickness modulations) are
small, except close to the edge, indicating that the surface
waves are solely due to the sinuous mode of sheet
deformation [21,29,30]. The reflected laser beam from
the wavy surface of the liquid sheet is projected onto a
graduated screen, and the position of the laser spot is
recorded in time. Sinuous waves of a required frequency
were generated by placing the vertical impactor on a
vibrating stage. The entire setup was placed inside a
vacuum chamber, enabling experiments under subatmo-
spheric pressure conditions. As the waves move past a fixed
point on the sheet, the reflected laser spot oscillates on the
screen. The surface inclination angle of the liquid sheet
with respect to the horizontal, θ, is related to the displace-
ment of the laser spot (d3) by tanð2θÞ ¼ d3=ðd1 þ d2Þ,
where d1 and d2 are defined in Fig. 1(b). A fast Fourier
transformation of the time series data gives the frequency
and the amplitude of the (oscillating) inclination angle of
the dominant waves. The maximum inclination angle was
less than 4° in all cases, indicating that the deformation was
in the linear regime (see Supplemental Material [31]).
The measured amplitudes of the surface inclination angle

were compared with the predictions of the new theory that
accounts for the thinning of the radially expanding liquid
sheet but ignores aerodynamic interactions [20]. The main
result of the analysis can be understood via a scaling
analysis that balances the centrifugal force exerted by liquid
flowing in a curved section of the sheet with the line tension
resisting it,

−ρlU2hðrÞ∂
2Fþ
∂r2 þ 2σ∇2

rFþ∼ ρlhðrÞ
∂
∂t
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�
;
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Here, Fþ is the centerline position of the sheet and is a
function of r and time, t. Rendering h and r dimensionless
with characteristic thickness, h0, and radial distance,
r0ð¼d2=8h0Þ, respectively, along with F̄þ ¼ Fþ=h0 and
t̄ ¼ tU=r0 gives,
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FIG. 1. (a) Experimental set-up for generating radially expand-
ing liquid sheet. Sinusoidal motion of the vibrating impactor
generates sinuous waves that are convected radially outward.
(b) Surface inclination angle, θ, of the surface waves is related to
the displacement, d3, of the laser spot on the screen. (c) Measured
dimensionless sheet radius versus Wed in the absence of
forcing and at atmospheric pressure. The solid line represents,
2R=d ¼ Wed=8. The vertical dotted lines represent Wed at which
the spatial growth rates of sinuous waves were determined.
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where, Weh is defined with respect to h0. Note that
2r̄ < Weh everywhere except at the edge of the sheet,
where 2r̄ ¼ Weh, implying that the coefficient of the first
term in (2) goes to zero at the edge. For a sheet that vibrates
at a fixed frequency, the spatial growth of the corresponding
wave is determined by setting, F̄þ ¼ S̄ðr̄Þeiω̄ t̄, and solving,
½ð2r̄=WehÞ − 1�d2S̄=dr̄2 þ ω2S̄ ∼ 0. Here, ω̄≡ ωR=U is
the dimensionless frequency, and a small slope
(dS̄=dr ≪ 1) is assumed. The analytical solution is a
Bessel function of the first order that diverges at the edge
of the sheet irrespective of ω̄, S̄ → ð1 − 2r̄=WehÞ−1=2 (see
Supplemental Material [31]).
A more exact equation describing the dynamics is

derived from a regular perturbation analysis (h0=r0 ≪ 1)
of the inviscid flow problem for a thin, radially expanding
sheet [20],
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Substituting for F̄þ in (3) and solving for S̄ with the
conditions of zero slope and a small but finite perturbation
(S̄0) close to the impingement point [20,21], shows that
wave amplitude diverges at the edge of the sheet, just as
in the scaling analysis, but now more quickly, S̄ →
ð1 − 2r̄=WehÞ−1 [20]. The resulting differential equation
can be rescaled so that the results for varying X ≡ r̄=Weh
collapse onto a single master curve for a fixed N ≡ ω̄Weh,

d2ðS̄=S̄0Þ
dX2

½2X − 1� þ dðS̄=S̄0Þ
dX
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The slope of the wave, tan θ, is obtained by taking the
derivative of F̄þ with respect to r̄ and retaining the real
terms in the resulting expression. Given the complex nature
of flow at the impingement point, it is not possible to
determine experimentally, the amplitude of the perturbation
induced by the oscillating impactor at the impingement
point. Therefore, the value of S̄0 was chosen such that the
theoretical curve passes through the first data point for each
frequency. This is equivalent to inserting the measured
perturbation of the first data point into the model and then
predicting the rest of the spatial growth. Thus, there are no
fitting parameters in the solution procedure. Further details
are given in the Supplemental Material [31].
Figure 2 shows the spatial growth of the sinuous waves

for the smooth regime (Wed ¼ 550 and 700) and for varying
forcing frequencies. The plot also includes spatial growth at
0.6 atm to determine the influence of the surrounding gas

phase on the spatial growth. Clearly, there is an excellent
agreement between the prediction and the measurements at
both pressure conditions. While the amplitudes all diverge
at the edge of the sheet irrespective of the forcing frequency,
lower frequencies show high growth rates closer to the
impingement point. This is captured accurately by the
model. The data at the subatmospheric pressure are only
marginally lower in some cases but follow the predicted
profiles closely, which clearly shows that gas phase inertia
has a negligible impact, and the growth is on account of the
thinning effect. The error bars (not shown) are within �5%
of the mean values for all cases.
Figure 3 presents the spatial growth for Wed ¼ 975 and

1200, which correspond to the flapping regime. There is an
excellent agreement between the measurements and the
predictions at Wed ¼ 975 for all three frequencies and at
both ambient pressures. At the highest Wed, experiments
could not be performed at subatmospheric pressure since
the fine drops ejected from the edge of the sheet led to

(a)

(b)

FIG. 2. Measured amplitude of surface inclination angle at
different radial locations is compared with predictions (lines, (3))
in the smooth regime for a range of forcing frequencies and at 1
and 0.6 atm, (a) Wed ¼ 550 and (b) Wed ¼ 700.
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significant water condensation on the beam splitter. The
same problem was encountered during forcing under
atmospheric conditions, as it led to a dense spray. Since
the sheet flapped significantly even in the absence of
forcing, we obtained the growth rate for frequencies of
the three highest natural modes present in the system at
atmospheric pressure. These modes are attributed to the
disturbances in the system and may be caused by the pump,
the vibrations induced by flow in the piping and/or the

impactor assembly. Importantly, the amplitude of the
disturbances increased with flow rate enabling reliable
measurements at high Wed. The predictions of the spatial
growth match remarkably well with the measurements and
capture the variation in spatial growth with frequency.
These results clearly show that the growth of the sinuous
waves are completely determined by the thinning of the
radially expanding sheet even at a very high Wed. The inset
of Fig. 3(a) shows the collapse of the data in the rescaled
coordinates across varying Wed and ω̄ for three different
values of N, demonstrating the existence of a master curve
for a fixed N. These results reinforce the claim that the
growth of the sinuous waves for the range of experimental
conditions tested here, whether in the smooth regime or in
the flapping regime, is controlled by the thinning of the
liquid sheet and not by aerodynamic interactions.
A corollary to these findings is that the decrease in sheet

diameter with increasing Wed in the flapping regime is not
due to aerodynamic interactions, as previously proposed,
but is a function of the disturbances present in the system.
Thus, the transition from the smooth to the flapping
regimes may be delayed by reducing the intensity of such
disturbances. These conclusions are supported by the
experiments of Crapper and Dombrowski [33] on fan spray
nozzles in the flapping regime, who showed that the
dominant frequencies of a flapping sheet and the sub-
sequent drop size distribution are significantly influenced
by the resonance of the apparatus, indicating that different
experimental rigs can cause a spray nozzle to produce
different drop-size spectra. Experiments on air-assisted
nozzles, wherein a liquid sheet is sandwiched between
two sheets of high-speed air to enhance atomization, show
that the effect of introducing air in the nozzle is similar to
the effect of inducing forced vibrations on the nozzle jaws.
Thus, for each air flow rate, there is a specific vibration
frequency for the nozzle [30].
In sharp contrast to the above results, the aerodynamic

theory [7] predicts nonzero spatial growth rates only up to a
critical radius, whose value increases with Wed but
decreases with forcing frequency (see Supplemental
Material for a detailed comparison [31]). Consequently,
the growth rates are negligible for Wed ¼ 550 and 700 for
all frequencies tested in the experiments. At Wed ¼ 975,
the measured amplitudes are higher at 60 Hz, while they are
lower than the predictions at 200 Hz [inset of Fig. 3(b)].
Further, the aerodynamic theory predicts a stable sheet
beyond 4 cm at 200 Hz, while measurements show a
growing sinuous mode. More importantly, the predicted
amplitude decreases substantially at the lower pressure
(0.6 atm), which is not observed in the experiments. At the
highest Wed, the predicted amplitudes are much higher
than the measurements. These results point to the general
failure of the aerodynamic theory in capturing even the
most basic trends observed in the experiments. Recent
simulations of thin, constant thickness sheets [34,35] show

(a)

(b)

FIG. 3. Measured amplitude of surface inclination angle at
different radial locations is compared with predictions (lines) in
the flapping regime for a range of disturbance frequencies,
(a) Wed ¼ 975 at 1 and 0.6 atm. The inset shows the collapse
of three sets of measurements for fixed N across all Wed and
varying ω̄ (legend: Wed, frequency, N). The solid lines are
theoretical predictions (4) for a fixed N, and (b) Wed ¼ 1200 at
1 atm. Note that the frequencies at Wed ¼ 1200 correspond to the
highest natural modes in the system. The inset compares
measurements with predictions of the aerodynamic theory (dotted
lines) for Wed ¼ 975 and 1200 (see Supplemental Material for
details [31]).
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that the growth rates predicted by the aerodynamic theory
are significantly higher, by more than a factor of two, than
the measurements. They show that the presence of a thin
gas boundary layer next to the liquid-gas interface signifi-
cantly dampens the growth rate. Consequently, the influ-
ence of the aerodynamic interactions on the growth of
sinuous waves should be smaller than that predicted by the
aerodynamic theory.
With a more accurate description of the dynamics of

radially expanding liquid sheets, it should now be possible
to obtain a more accurate prediction of the final drop-size
distribution. These findings are especially relevant to
industrial nozzles, such as the fan spray and the floodjet
nozzles, where the sheet thickness reduces with distance
from the nozzle tip. The growth of the sinuous waves would
be dominated by the thinning effect in such cases [22]. As
the sinuous waves grow spatially, the increasing oscilla-
tions of the liquid sheet make them susceptible to the
Rayleigh-Taylor type of instability [36], which will set the
radius of the undulating sheet. A thin liquid sheet accel-
erated perpendicular to itself breaks into droplets, whose
average radius scales as ∼ðσh=ρljajÞ1=3, where a is the
acceleration imparted by the spatially growing sinuous
wave and is given by the right-hand side of (3). Thus,
increasing a by increasing forcing amplitude, liquid speed,
and/or forcing frequency will lead to smaller droplets.
Such strategies based on model predictions should lead to
better designs of nozzles for control on the final drop-size
distribution.

The authors are grateful to Professor Howard A. Stone
for suggesting the rescaling that led to Eq. (4) and thank
Professors Y. S. Mayya, T. R. S. Prasanna, and R. M.
Thaokar for discussions. M. S. T. acknowledges financial
assistance from the Swaranjayanti Fellowship from the
Department of Science and Technology and the Council of
Scientific and Industrial Research. N. M. acknowledges
financial assistance from the Indian Institute of Technology
Bombay.

*mahesh@che.iitb.ac.in
[1] A. H. Lefebvre and V. G. McDonell, Atomization and

Sprays, 2nd ed. (CRC Press, Boca Raton, 2017).
[2] A. H. Lefebvre, Atom. Sprays 10, 251 (2000).
[3] K. Masters, Spray Drying, 2nd ed. (John Wiley, New York,

1976).
[4] G. E. McCreery and C. M. Stoots, Int. J. Multiphase Flow 3,

431 (1995).
[5] G. J. Dorr, A. J. Hewitt, S. W. Adkins, J. Hanan, H. Zhang,

and B. Noller, Crop protection 53, 109 (2013).

[6] Handbook of Atomization and Sprays, edited by N. Ashgriz,
1st ed. (Springer, New York, 2011).

[7] H. Squire, Br. J. Appl. Phys. 4, 167 (1953).
[8] E. Villermaux, Annu. Rev. Fluid Mech. 39, 419 (2007).
[9] J. Huang, J. Fluid Mech. 43, 305 (1970).

[10] G. Crapper, N. Dombrowski, and G. Pyott, Proc. R. Soc. A
342, 209 (1975).

[11] D. Weihs, J. Fluid Mech. 87, 289 (1978).
[12] E. A. IbrahimandA. J. Przekwas, Phys. Fluids3, 2981 (1991).
[13] W. Sirignano and C. Mehring, Prog. Energy Combust. Sci.

26, 609 (2000).
[14] C. Clanet and E. Villermaux, J. Fluid Mech. 462, 307

(2002).
[15] E. Villermaux and C. Clanet, J. Fluid Mech. 462, 341

(2002).
[16] S. P. Lin, Breakup of Liquid Sheets and Jets, 1st ed.

(Cambridge University Press, Cambridge, 2003).
[17] S. P. Lin and W. Y. Jiang, Phys. Fluids 15, 1745 (2003).
[18] N. Bremond, C. Clanet, and E. Villermaux, J. Fluid Mech.

585, 421 (2007).
[19] M. Altimira, A. Rivas, J. C. Ramos, and R. Anton, Atom.

Sprays 22, 733 (2012).
[20] M. Tirumkudulu and M. Paramati, Phys. Fluids 25, 102107

(2013).
[21] M. Paramati, M. Tirumkudulu, and P. Schmid, J. Fluid

Mech. 770, 398 (2015).
[22] N. Majumdar and M. S. Tirumkudulu, Phys. Fluids 28,

052101 (2016).
[23] G. Taylor, Proc. R. Soc. A 253, 313 (1959).
[24] F. Savart, Ann. Chim. 54, 56 (1833).
[25] G. Taylor, Proc. R. Soc. A 253, 296 (1959).
[26] F. E. C. Culick, J. Appl. Phys. 31, 1128 (1960).
[27] C. Sohl, K. Miyano, and J. Ketterson, Rev. Sci. Instrum. 49,

1464 (1978).
[28] A. Clarke, S. J. Weinstein, A. G. Moon, and E. A. Simister,

Phys. Fluids 9, 3637 (1997).
[29] W.W. Hagerty and J. Shea, J. Appl. Mech. 22, 509

(1955).
[30] A. Mansour and N. Chigier, Phys. Fluids 3, 2971 (1991).
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.120.164501 for addi-
tional details. It is divided into five sections: I. Measurement
of surface inclination angle, II. Additional Data, III. Scaling
Analysis, IV. Theoretical predictions, V. Comparisons of the
measurements with predictions of the aerodynamic theory,
which includes Ref. [32].

[32] P. G. Drazin and W. Reid, Hydrodynamic Stability
(Cambridge University Press, Cambridge, 1981), 1st ed.

[33] G. Crapper and N. Dombrowski, Int. J. Multiphase Flow 10,
731 (1984).

[34] O. Tammisola, A. Sasaki, F. Lundell, M. Ma, and L. D.
Soderberg, J. Fluid Mech. 672, 5 (2011).

[35] J. Eggers, J. Fluid Mech. 672, 1 (2011).
[36] J. B. Keller and I. Kolodner, J. Appl. Phys. 25, 918 (1954).

PHYSICAL REVIEW LETTERS 120, 164501 (2018)

164501-5

https://doi.org/10.1615/AtomizSpr.v10.i3-5.40
https://doi.org/10.1016/j.cropro.2013.06.017
https://doi.org/10.1088/0508-3443/4/6/302
https://doi.org/10.1146/annurev.fluid.39.050905.110214
https://doi.org/10.1017/S0022112070002392
https://doi.org/10.1098/rspa.1975.0021
https://doi.org/10.1098/rspa.1975.0021
https://doi.org/10.1017/S0022112078001597
https://doi.org/10.1063/1.857840
https://doi.org/10.1016/S0360-1285(00)00014-9
https://doi.org/10.1016/S0360-1285(00)00014-9
https://doi.org/10.1017/S0022112002008339
https://doi.org/10.1017/S0022112002008339
https://doi.org/10.1017/S0022112002008376
https://doi.org/10.1017/S0022112002008376
https://doi.org/10.1063/1.1570422
https://doi.org/10.1017/S0022112007006775
https://doi.org/10.1017/S0022112007006775
https://doi.org/10.1615/AtomizSpr.2012006220
https://doi.org/10.1615/AtomizSpr.2012006220
https://doi.org/10.1063/1.4824705
https://doi.org/10.1063/1.4824705
https://doi.org/10.1017/jfm.2015.137
https://doi.org/10.1017/jfm.2015.137
https://doi.org/10.1063/1.4948269
https://doi.org/10.1063/1.4948269
https://doi.org/10.1098/rspa.1959.0196
https://doi.org/10.1098/rspa.1959.0195
https://doi.org/10.1063/1.1735765
https://doi.org/10.1063/1.1135288
https://doi.org/10.1063/1.1135288
https://doi.org/10.1063/1.869501
https://doi.org/10.1063/1.857839
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.164501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.164501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.164501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.164501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.164501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.164501
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.164501
https://doi.org/10.1016/0301-9322(84)90009-0
https://doi.org/10.1016/0301-9322(84)90009-0
https://doi.org/10.1017/S0022112010006087
https://doi.org/10.1017/S0022112011000231
https://doi.org/10.1063/1.1721770

