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Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can
attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation
exploits the modification of the spatiotemporal field structure when observed in reference frames moving at
relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt
the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the
case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse
displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels
in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost.
The roles of the axial spatial coordinate and time are swapped, leading to “time diffraction” manifested in
self-acceleration observed in the propagating Airy wave-packet frame.
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Diffraction is a fundamental feature of all wave phenom-
ena that leads to the spatial spreading of localized excita-
tions upon free propagation. In optics, diffractive spreading
sets the limit on imaging resolution, from microscopes to
self-driving cars. Despite inexorable diffraction, there are
particular waveforms that propagate self-similarly and are
thus called “diffraction-free,” e.g., Bessel beams [1], among
other possibilities [2]. An altogether different approach—
that has received scant attention—to hinder the diffraction
of freely propagating fields without recourse to specific
waveforms relies on exploiting the impact of Lorentz
transformations associated with observers moving with
respect to the field [3,4]. In general, the characteristics
of an optical field in space and time can vary drastically
when observed in reference frames moving at relativistic
speeds. For example, the Lorentz boost associated with an
observer moving along the propagation axis of a mono-
chromatic beam reveals a wave packet whose spatiotem-
poral spectral components are correlated [3]. Furthermore,
it has been recently predicted that novel and yet-to-be-
observed phenomena take place after applying a Lorentz
boost, such as the emergence of nonaxial components of
the orbital angular momentum and time diffraction [5].
Such experiments, however, offer prohibitive technical
difficulties because of the relativistic speeds required.
Here we demonstrate that under a Lorentz boost the

spatiotemporal (ST) profile of a pulsed beam (or wave
packet) undergoes a spectral deformation that swaps the
roles of the axial spatial coordinate with that of time [3,6],
thereby bringing about two surprising consequences. The
first is the total arrest of any axial dynamics and, second,
“time diffraction” is anticipated in the transverse plane; i.e.,
the usual spatial diffraction dynamics—which is now halted
—is displayed instead in the local time domain of the pulse.

We confirm our predictions experimentally by realizing the
ST spectral deformation associated with a Lorentz boost via
a ST phase-only modulation of a pulsed laser beam [7].
Although these consequences apply to all optical fields,

such phenomena will be particularly striking and easily
recognizable in the case of ð1þ 1ÞD pulsed light sheets,
that is, a wave packet described with one transverse
dimension in addition to time. Light sheets pose a funda-
mental difficulty: No “diffraction-free” monochromatic
solutions exist—with the exception of the Airy beam [8]
that indeed travels with no change in shape or size but
whose peak undergoes a transversal displacement upon
axial propagation to trace out a parabolic trajectory [9].
These “self-accelerating” beams [10] have applications
spanning microscopy [11], microparticle manipulation
[12], and nonlinear optics [13] by virtue of their salutary
characteristics [14–16]. We pose here the following ques-
tion: How does the acceleration associated with an Airy
wave packet appear to an observer moving at a relativistic
speed? By deforming its ST spectral locus, we observe a
halt in the usual transverse acceleration of an Airy wave
packet, which propagates acceleration-free with no changes
in the shape or scale along a straight line (see Ref. [17] for a
previous theoretical study). Furthermore, by reconstructing
the complex field in space and time, we observe a clear
display of time diffraction—where ST acceleration is
regained locally in the wave packet’s time frame.
We start by elucidating the impact of Lorentz boosts

on ð1þ 1ÞD optical fields of the form Eðx; z; tÞ ¼
ψðx; z; tÞeifkoz−ωotg, where x and z are the transverse and
axial coordinates, respectively, t is the time, ψðx; 0; tÞ is the
envelope at z ¼ 0, ωo is the carrier frequency, ko ¼ ωo=c is
a fixed wave number, and is the speed of light in a
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vacuum [Fig. 1(a)]. The locus of the ST spectrum of
any field in the laboratory frame ðx; z; ctÞ can be repre-
sented on the surface of the light cone k2x þ k2z ¼ ðω=cÞ2,
where kx and kz are the transverse and axial wave vector
components (spatial frequencies), respectively, and ω is the
angular (temporal) frequency [Fig. 1(b)]. The Lorentz boost
associated with a reference frame (x0, z0, ct0) moving at a
velocity v with respect to the laboratory frame preserves
the shape of the light cone, but the points constituting
its surface undergo a topology-preserving homeomor-
phism according to kx ¼ k0x, kz ¼ γðk0z þ βω0=cÞ, and
ω=c ¼ γðω0=cþ βk0zÞ; here the Lorentz factor is
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, where β ¼ v=c. In physical space, the

Lorentz-transformed field is E0ðx0; z0; t0Þ after substituting
x ¼ x0, z ¼ γðz0 þ βct0Þ, and ct ¼ γðct0 þ βz0Þ in
Eðx; z; tÞ. Therefore, starting from a monochromatic
beam Eðx; z; tÞ ¼ ψðx; zÞeifkoz−ωotg whose ST locus is
the circle at the intersection of the light cone with a
horizontal iso-ω plane Pð0Þ [Fig. 1(c)], the Lorentz boost

associated with the (x0, z0, ct0) frame deforms this
spectral locus through tilting the iso-ω plane Pð0Þ an
angle tan θ ¼ −v=c with respect to the (kx, kz) plane
[Fig. 1(d)]. In other words, a monochromatic beam in the
laboratory frame becomes from the perspective of an
observer in the (x0, z0, t0) frame a pulsed beam or wave
packet E0ðx0; z0; t0Þ ¼ ψðx0; z0 − vgt0Þeifk0oz0−ω0

ot0g; ω0
o ¼

γð1 − βÞωo is a Doppler-shifted carrier frequency, and
k0o ¼ ω0

o=c [18]. The spectral locus of this wave packet
is the conic section at the intersection of the tilted ST
plane PðθÞ with the light cone, where vg ¼ −v is the
wave-packet group velocity by virtue of the linear
dispersion relation in the (kz, ω=c) plane, which is of
the form ω=c ¼ ko þ ðkz − koÞvg=c.
In general, the ST spectrum of a generic wave packet

occupies a patch on the surface of the light cone because of
the inclusion of both ST frequency components whose
complex amplitudes determine the spatial and temporal
profiles. Wave packets lying in planes PðθÞ with θ ≠ 0 are

FIG. 1. Deformation of the ST spectrum of an optical wave packet after implementing a relativistic Lorentz transformation. (a) The
laboratory frame is described by the ST coordinates (x, z, ct) and frequencies (kx, kz, ω=c). Primed coordinates are used for a frame
moving at a velocity v ¼ −0.85c with respect to the laboratory frame along z. (b) The light cone ω2=c2 ¼ k2x þ k2z , where we use color
for clarity to signify the frequency up to ω=c ¼ 3.5 (in arbitrary units). (c) The spectral locus of a monochromatic beam in a horizontal
plane Pð0Þ. (d) The monochromatic beam in (c) when viewed in the (x0, z0, ct0) frame becomes a wave packet along a conic section (here
an ellipse) in the plane PðθÞ; tan θ ¼ 0.85 ¼ vg=c. Projections of this curve on the three planes (kx, kz), (kx, ω=c), and (kz, ω=c) are
shown. (e) The (x0, z0, ct0) frame is moving at a velocity v ¼ 0.85c. (f) The ST spectral locus of a wave packet in the (x, z, ct) frame lying
in a plane PðθÞwith tan θ ¼ 1.176. (g) The ST spectral locus of the wave packet in (f) observed in the moving (x0, z0, ct0) frame now lies
in the Pðπ=2Þ plane. In the (k0z, ω0=c) plane, the projection is a vertical line. Note that the maximum frequency in (c) and (f) is ω=c ¼ 1.
The light cone is preserved in the moving frames, but the frequencies in each constant-kx plane are blueshifted in (d) and redshifted in (g)
for forward propagating ðkz > 0Þ beams. We indicate this by retaining the same colors associated with the frequencies in (b).
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characterized by the property that each spatial frequency kx
is correlated uniquely to a temporal frequency ω, thus
resulting in a reduced-dimensionality ST spectrum. Such
wave packets undergo rigid free propagation along z [18].
Starting instead with an STwave packet of group velocity

vg, Eðx; z; tÞ ¼ ψðx; z − vgtÞeifkoz−ωotg, a further Lorentz
boost [Fig. 1(e)] results in additional tilting of the ST
spectral plane that yields a wave packet of group velocity
v0g through the usual relativistic addition of velocities
v0g¼½ðvg−vÞ=ð1−vgv=c2Þ�. As such, no sequence of
Lorentz boosts can produce a wave packet with vg > c.
Nevertheless, starting from a wave packet with vg > c lying
in the planePðθÞwith θ > π=4 [19,20] as shown in Fig. 1(f),
a Lorentz boost can produce a wave packet with arbitrary
group velocity v0g > cwhose field is given byE0ðx0; z0; t0Þ ¼
ψðx0; γzz0 − γtct0Þeiðk0oz0−ω0

ot0Þ, where γz ¼ γð1 − β tan θÞ,
γt ¼ γðtan θ − βÞ, v0g ¼ cγt=γz, and the wave packet lies
in a plane Pðθ0Þ where tan θ0 ¼ ðtan θ − βÞ=ð1 − β tan θÞ.
This is not a violation of relativity but instead an instance of
the “scissors” effect, where the meeting point of the two
blades can move at an arbitrary speed without transmitting
information, as is the case of X waves, for instance [21–23].
The continuum of planes PðθÞ is thus segmented into two
classes, corresponding to wave packets with subluminal and
superluminal group velocities, each of whose members can
be interconverted through Lorentz boosts. At the specific
velocity v ¼ c2=vg ¼ c= tan θ for the (x0, z0, ct0) frame, the

Lorentz boost rotates PðθÞ such that it becomes exactly the
vertical iso-kz plane Pðπ=2Þ in Fig. 1(g) [3], and the field
simplifies to E0ðx0; z0; t0Þ ¼ ψðx0;− tan θct0=γÞeiðkoz0−ωot0Þ=γ .
Wave packets lying in the plane Pðπ=2Þ are thus
distinguished from those in any other plane Pð0Þ in that
the z dependence of the envelope of E0ðx0; z0; t0Þ vanishes
altogether, and, consequently, all axial dynamics for such
wave packets is halted except for an overall phase [17,24].
Furthermore, the same time-diffraction dynamics is observed
in every transverse plane along the axis.
In specializing to an Airy wave packet, we first note

that the unique monochromatic propagation-invariant
solution to the wave equation in one transverse spatial
dimension in the paraxial limit is of the form Eðx; z; tÞ ¼
ψ(x − fðzÞ)eifφðx;zÞþkoz−ωotg, where ψðxÞ ¼ AiðxÞ is the
Airy function, fðzÞ traces a parabolic trajectory, and φ is a
phase factor [8,9] [Fig. 2(a)]. Such a beam can be readily
synthesized in the spatial-frequency domain by recognizing
that the Fourier transform of the Airy function is a cubic
phase [Fig. 2(b)] [9]. A pulsed Airy beam incorporates a
finite spectral bandwidth such that ψðx; 0; tÞ ≈ gðtÞAiðxÞ,
where gðtÞ is the pulse profile. The reduced dimensionality
envelope associated with the hyperbolic ST spectral locus
in Fig. 1(b) once rotated to the iso-kz plane Pðπ=2Þ of
the (x0, z0, ct0) frame takes the form jψðx0; z0; t0Þj ¼
jAi(x0 − fð− tan θct0=γÞ)j, so that time diffraction takes
the form of acceleration along a parabolic trajectory in the

FIG. 2. Airy wave packets accelerating in
space-time. (a) Intensity of a traditional quasimo-
nochromatic Airy beam accelerating along a
parabolic trajectory in the transverse direction x
as it propagates along z. (b) The real and
imaginary parts of the ST spectrum Ẽðkx;ωÞ
are separable in kx and ω and have a cubic phase
dependence on kx. The ST spectrum approxi-
mately lies along the intersection of the light cone
with a horizontal iso-ω plane. (c) Upon an
appropriate Lorentz transformation, the ST spec-
trum Ẽðkx;ωÞ lies along the hyperbola at the
intersection of the light cone with an iso-kz plane.
The real and imaginary parts are plotted high-
lighting the cubic phase with kx characteristic of
an Airy beam along the correlated ST spectrum.
(d) The STAiry wave packet does not exhibit the
expected acceleration and instead travels in a
straight line. We plot here the time-averaged
intensity

R
dtjEðx; z; tÞj2 as registered by a slow

detector. (e) Acceleration is restricted to the local
ST domain of the local time frame τ of the
traveling pulse, where parabolic space-time curves
are observed. At the pulse center τ ¼ 0, the beam
profile takes the precise shape of an Airy function.
(f) Schematic of the setup for ST synthesis. BS,
beam splitter; CL, cylindrical lens; G, diffraction
grating; SLM, spatial light modulator.
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ST domain (x0, t0) independently of z0. For an Airy beam,
this implies the elimination of transverse acceleration that
is normally considered to be a fundamental aspect of its
behavior.
Although theoretical studies have considered the impact

of Lorentz boosts on the ST structure of wave packets
[3,4,18], implementing such boosts via moving detectors is
not practical at the velocities required, and their impact has
thus not been verified experimentally to date. To test the
predictions described above, we utilize a methodology
that enables precise control over the spectral correlations
underlying the ST structure of a wave packet. Specifically,
we combine pulse shaping with beam modulation in the
two-dimensional pulse shaper illustrated in Fig. 2(f) to
introduce the ST spectral deformation associated with
rotating the plane P to the vertical orientation in Fig. 1(g)
[7]. The phase-only modulation that sculpts the joint ST
spectral distribution of the wave packet enables us to
synthesize the target ST Airy wave packet [Fig. 2(c)] and
thus realize the impact of the attendant Lorentz boost.
Starting from a femtosecond pulsed plane wave, a

diffraction grating together with a cylindrical lens spreads
the spectrum in space before impinging on a reflective
spatial light modulator (SLM) that imparts a spatial phase
distribution Φðx; yÞ to the wave front. The reflected field
returns to the grating whereupon the pulse is reconstituted
[7] [Fig. 2(f)]. The phaseΦ is designed to achieve two goals
simultaneously. First, the equal-amplitude but oppositely
signed spatial frequencies�kx are assigned to one temporal
frequency ω (within some spectral uncertainty δω)
according to the hyperbolic dispersion relationship k2o ¼
ω2=c2 − k2x, which results in confining the ST spectrum to
the trajectory defined by the intersection of the light cone
with the iso-kz plane kz ¼ ko [Fig. 2(c)]. Second, a phase
distribution of the form eiαk

3
x is incorporated into Φ by the

SLM to realize the functional form of the Airy beam. The
reconstituted ST Airy wave packet is then expected to
propagate acceleration-free in a straight line.
To reconstruct the ST profile of the Airy wave packet, we

measure the amplitude and phase of the complex spectrum
Ẽðkx; λÞ. The magnitude jẼðkx; λÞj is readily measured after
implementing a spatial Fourier transform x → kx upon the
Airy wave packet using a 2f optical system and resolving
the spectrum for each kx via a diffraction grating (see
Supplemental Material [25]). The measured squared-
amplitude jẼðkx; λÞj2 is shown in Fig. 3(a), which reveals
a hyperbolic correlation between kx and λ, with temporal
bandwidth Δλ¼0.715nm, spectral uncertainty δλ¼24pm,
and spatial bandwidth Δkx ¼ 0.33 rad=μm. We measure
the phase of Ẽðkx; λÞ in two steps following the approach
outlined in Ref. [26]. First, we obtain the relative phase
between the two branches of the hyperbola in Fig. 3(a) by
measuring the spatially resolved spectrum jẼðx; λÞj2, which
is plotted in Fig. 3(b). The sought-after phase is related to
the shift in the fringes in, jẼðx; λÞj2, which can be extracted
by taking a Fourier transform of this hybrid spectrum along
x. Second, we measure the spectral chirp in the original
femtosecond pulse—which is found to be negligible over
the spectral bandwidth Δλ—utilizing a frequency-resolved
optical gating (FROG)-based approach (Supplemental
Material [25]). The phase reconstructed by combining
these two measurements reveals a cubic spectral phase
that is in excellent agreement with the phase implemented
by the SLM [Fig. 3(c)]. The complex ST spectrum Ẽðkx; λÞ
resulting from combining the amplitude and phase
measurements is given in Fig. 3(d).
It is now straightforward to obtain the complex ST field

profile Eðx; τÞ of the Airy wave packet by performing a 2D
ST Fourier transform Ẽðkx; λÞ → Eðx; τÞ, where τ is the
time in the moving wave packet frame [Fig. 4(a)]. It is

FIG. 3. Retrieval of the complex spatiotem-
poral spectrum. (a) Measured ST spectrum
jẼðλ; kxÞj2; see Supplemental Material [25]
for the measurement setup. (b) Measured hybrid
spectrum. The shift in the fringes with a
decreasing wavelength is a result of the relative
phase difference between the oppositely signed
but equal-amplitude spatial frequencies. (c) By
taking a one-dimensional Fourier transform of
(b) along the x direction, we obtain a hyperbolic
complex spectrum from which we extract the
phase along the arms of the hyperbola, plotted
here along kx, which is in good agreement with
the required cubic phase of the Airy spectrum.
(d) The complex ST spectrum Ẽðλ; kxÞ obtained
by superposing the experimentally measured
spectrum jẼðλ; kxÞj2 in (a) with the retrieved
phase (c).
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clear that the pulse accelerates with τ in the x direction
along a local space-time trajectory given by x ¼ ðλocτÞ2=
ð13.5σoÞ3 − 2σo, where σo is the beam waist. The beam
profile measured by a slow detector (e.g., a CCD camera) as
a function of propagation distance z is plotted in Fig. 4(b).
The time-averaged wave-packet spatial profile does not
exhibit any transverse dynamics as is usual with an Airy
beam and instead propagates along a perfectly straight axial
trajectory. A monochromatic Airy beam having the same
spatial bandwidth Δkx would undergo a transverse shift of
≈100 μm along a parabolic trajectory over the course
of 10 mm axial propagation [the dashed black curve in
Fig. 4(b)]. Note that increasing the spectral uncertainty δλ,
and thus reducing the tight ST correlations, reduces the
acceleration-free range and deforms the Airy-function
profile along z (Supplemental Material [25]).
We have produced the first acceleration-free Airy wave

packet that propagates in a straight line. Our Letter
contrasts with previous studies that have focused on
Airy wave packets with separable spatial and temporal
degrees of freedom, any of which can take on the Airy

functional form [27–29]. An interesting avenue to pursue is
the investigation of the interaction of these ultrafast
diffraction-free wave packets with matter, especially elec-
trons and other charged particles, in addition to excitations
of exotic electronic states in 2D materials. Moreover, the
concept of self-acceleration has ramifications that extend
far beyond optical physics, extending from structuring
electron beams [30] to prolonging the lifetime of unstable
relativistic fermions [31], all of which can benefit from the
additional temporal degree of freedom introduced into the
Airy wave packets in our Letter.
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