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It is desirable to observe synchronization of quantum systems in the quantum regime, defined by the low

number of excitations and a highly nonclassical steady state of the self-sustained oscillator. Several existing

proposals of observing synchronization in the quantum regime suffer from the fact that the noise statistics

overwhelm synchronization in this regime. Here, we resolve this issue by driving a self-sustained oscillator

with a squeezing Hamiltonian instead of a harmonic drive and analyze this system in the classical and

quantum regime. We demonstrate that strong entrainment is possible for small values of squeezing, and in

this regime, the states are nonclassical. Furthermore, we show that the quality of synchronization measured
by the FWHM of the power spectrum is enhanced with squeezing.

DOI: 10.1103/PhysRevLett.120.163601

Introduction.—Synchronization is a ubiquitous phe-
nomenon observed in a plethora of vastly different scenar-
ios and has been extensively studied in both naturally
occurring as well as engineered systems [1-4]. At its core,
it can be viewed as an adjustment of rhythms of self-
sustaining or chaotic systems due to either an external drive
or a mutual coupling between the systems [5,6]. Recent
years have seen a growing interest in synchronization
phenomena in the quantum regime [7,8]. Phase-locking
has been studied in driven quantum self-sustained oscil-
lators [9-13], while several interacting oscillators were
shown to adjust their phase relationship in a manner
analogous to classical systems [14-21].

In order to access the quantum regime in these proposed
implementations, strong nonlinear damping rates are
desired in order to obtain steady states with low average
populations. In the experiments carried out in nanome-
chanical resonators [22-24] and micromechanical [25,26]
and optomechanical [27] oscillators, a common drawback
was that the system under investigation was highly excited.
This in turn limited our ability to witness any genuinely
quantum effects. New implementations of self-sustained
oscillators operating deeply in the quantum regime were
proposed recently [28,29].

In this new regime, quantum fluctuations play a much
more prominent role and in fact hinder the systems ability
to synchronize to an external drive by introducing a new
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source of phase diffusion into the system [11]. At first
glance, this seems to disqualify systems operating near the
ground state from being suitable candidates for the study of
synchronization. We show that this is not necessarily the
case and that the complications associated with added noise
originating from quantum fluctuations can be overcome
with another quintessential quantum effect, namely,
squeezing.

In this Letter, we show that squeezing can produce
(a) stronger synchronization, (b) a narrower observed
steady-state power spectrum, defined by S(w)=
[, dee* (b (z)b(0)),,, and (c) steady states that are
genuinely nonclassical. By analyzing squeezing as an
effective two-photon drive, we show that the mean of
the observed power spectrum is closer to the target
frequency, and the FWHM of the power spectrum is
smaller in comparison to the external drive considered in
the literature. By replacing the external drive with a
squeezing Hamiltonian, we overcome the deleterious
effects of noise and open up the potential of observing
quantum synchronization in the deep quantum regime.

We begin with a brief overview of a classical and
quantum van der Pol oscillator driven by an external
harmonic drive and its synchronization properties. We then
introduce our model and analyze the classical bifurcation
in the generic case when both the external harmonic drive
and squeezing are present. We compare the classical

© 2018 American Physical Society
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phase-space behavior with the steady-state Wigner function
in the quantum regime. After this, we focus on the cases
when either the harmonic drive or the squeezing is present
but not both at the same time in order to better contrast their
properties in the quantum regime and demonstrate that
squeezing is more effective at entraining the van der Pol
oscillator. Finally, we discuss two implementations of our
model, one using trapped ions and the other using opto-
mechanics, highlighting potential applications of our
results to emerging quantum technologies.

Van der Pol oscillator.—The van der Pol (vdP) oscillator
[30] driven by an external harmonic drive is given by

¥ = pu(1 = x?)% + wlx = F cos(wgyt). (1)

Here, w, is the natural frequency of the vdP, w, is the
frequency of the drive with strength F, and nonlinearity .
As expected, if the detuning A = o — wy; is too large for a
given driving strength F, the oscillator does not synchron-
ize to the drive. In phase space, this can be seen as a limit
cycle enclosing the origin suggesting that the oscillator
does not develop a preferred phase. The situation changes
for small enough A, when a stable fixed point emerges in
the phase plane meaning that the phase difference attains a
fixed value and the oscillator becomes phase-locked to the
drive and oscillates at the frequency w, [31].

Quantum equivalent of the driven vdP is given by the
following master equation in the frame rotating with the
external drive [11,12],

p = —i[Ab'h + iF(b - b"),p] + y\ Db |p + 7, D[b*]p.
(2)

Here, D[0]p = OpO'" — {00, p}/2 represents Lindblad
evolution, and y; and y, are rates for linear pumping and
nonlinear damping, respectively. In the limit of the system
being highly populated (y; > y,), Eq. (2) reproduces [32]
the equation of motion derived from Eq. (1) in the weak
nonlinearity limit (x4 < 1). Recently, a microscopic deri-
vation of this evolution was presented in [33].

The system described by Eq. (2) is different from the
classical case of Eq. (1) owing to the uncertainty principle.
This is reflected in the behavior of phase-space quasiprob-
ability distributions like the Wigner function, which is
centered about the classical fixed points. In [11], the
authors demonstrated that in the deep quantum regime
given by y; < y, the power spectrum widens considerably
about the classical value. This means that though there is
synchronization in this deep quantum regime, given by a
low number of photons, the quality of synchronization
worsens.

Squeezed vdP.—The squeezing Hamiltonian for a degen-
erate parametric down conversion process is given by

H,, = iy?(b*¢" — b™¢) [34], where ¢ is the pump mode,

b is the signal mode, and y(? is the second-order nonlinear
susceptibility. We make the standard parametric approxi-
mation whereby we assume that the pump mode depletion
is negligible and approximate ¢ by Aexp [—i(w,t —6)].
When w, = 2w,, the total Hamiltonian in the frame
rotating at frequency w, is

A

Ao = MDD+ iF (b — b7 + in(b2e™® — 526, (3)

where = y?)1 is the squeezing parameter. Including the
standard terms for linear pumping and nonlinear damping,
the full master equation is given by

A

p = —i[H. p) + 71D ]p + 1, D[H]p. (4)

Equation (4) has two contrasting regimes. When n =0
and F # 0, Eq. (4) reduces to a harmonically driven vdP
usually considered in the literature [11,12,35]. When n # 0
and F =0, we obtain a previously unexplored regime
which we refer to as a squeezing-driven vdP. We note
that squeezing in the context of synchronization has been
investigated in [36] and [19,37]. In [36], the authors
considered a linearization of the harmonically driven vdP
and showed that the nonlinear model of Eq. (2) can be
approximated by an effective squeezing Hamiltonian. This
is a very different scenario to ours as we are interested in the
effects of squeezing in the regime where linearization is
not applicable. In [19,37], the authors considered the effect
of squeezed initial states on transient dissipative dynamics
of networks of harmonic oscillators.

To gain intuition of the fixed points of the dynamics
given by Eq. (4), we begin by deriving the classical
equations of motion. When the oscillator is highly excited
(y; > y,), we can replace operator b with its average <l§> =
Re'? leading to the following coupled system of equations,

R = %R —72R3 — Fcos¢p — 2nR cos(2¢p — 0), (5)

¢ = —A+%sin¢+2nsin(2¢—9). (6)

In the simple case of driving on resonance (A = 0) and
squeezing along the position quadrature (6 = 0), Eq. (6)
displays a pitchfork bifurcation [5]. This can be seen by
looking at the dynamical equation for phase ¢ obtained
from Eq. (6) and setting the time derivative to zero,
0 =sin g, (F/Rys + 4ncos¢y,). For small squeezing
parameter 7, only a single stable fixed point exists at
¢ = 7. As n increases, ¢ = = becomes unstable, and two
new stable fixed points, symmetric about ¢p = 7, emerge.
This symmetry is broken for finite detuning. Now a single
fixed point exists for larger values of # compared to the
resonant case, and when bifurcation finally occurs, the two
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FIG. 1. Classical phase plane diagram. (a) 7n/y, =0,
(b) n/y; =1, and (c) n/y; = 1.5; the blue and orange curves
show R- and ¢-nullclines, respectively. For a small squeezing
parameter, only a single fixed point exists (solid black circle),
while for large enough 7/y,, two new fixed points are created,
one unstable (empty white circle) and one stable as displayed in
(c) and discussed in the main text. The other parameters are
Flyy=1A/y,=1,0=nx/4, and y,/y, = 3.

stable solutions are no longer symmetric about ¢p = z. This
is summarized in Fig. 1.

This behavior is observed also in the regime when the
average population of the oscillator is close to the ground
state. The steady-state solution p,, of Eq. (4) is obtained
numerically [38,39] for different values of 7, F', and A, and
the steady-state Wigner functions are plotted in Fig. 2. The
bifurcation behavior observed from the classical solutions
can be identified as splitting of the Wigner function into
two symmetric parts when driven on resonance. For finite
detuning A, this symmetry is broken as can be seen by the
lowering of one of the Wigner function peaks. This is
consistent with the observation of bifurcation of the phase
distribution associated with a squeezed vacuum [40].

n/n=1 n/m=3

/1 =0

0.20

0.05

0.00

Re(a) Re(a) Re(a)

FIG. 2. Bifurcation of the Wigner function. For column (a)—(g)
n/y1 =0, for column (b)-(h) n/y; =1, and for column
(¢)-() /71 = 3. Row (a)—(c): Undriven vdP when F/y; =0,
A/y; = 0. Squeezing acts to split the Wigner function into two
localized lobes symmetric around Im(a) =0. Row (d)—(f):
F/y, =1, A/y; = 0. Similar to the undriven case, the oscillator
displays symmetric bifurcation with increasing #. The difference
is that the oscillator develops a definite preferred phase when
n/v1 = 0. Row (g)-(): F/y; =1, A/y; = 1. Detuning breaks
the symmetry of the above two cases as one of the lobes of the
Wigner function nearly completely vanishes. All plots are in the
regime of a few excitations y,/y; = 3, and squeezing is along
the position quadrature = 0.

Synchronization without external drive—Squeezing may be
viewed as a two-photon drive suggesting that the harmonic
drive in Eq. (4) is not necessary in the presence of nonzero
squeezing. To investigate this, we note that Eq. (6) has a
stable steady-state solution even in the absence of the
harmonic drive, meaning the oscillator becomes phase-
locked and entrained to frequency w,. The stable solution,

b = % (z+0)— % sin”"! (%) , 7)

exists provided # > |A|/2. The phase of the pump mode @
rotates the solution ¢, in phase space and can be set to zero
for convenience. In contrast with the case of a finite
harmonic drive, when the synchronization requirement is
F > |A|Ry with Ry = +/¥1/2y», the Arnold tongue remark-
ably does not depend on the damping parameters y; and y,.
This suggests that both in the classical and quantum
regime, the Arnold tongue is less susceptible to the adverse
effects of noise, making strong entrainment a possibility in
the quantum regime.

Now, we focus on the differences in frequency entrain-
ment of a harmonically and squeezing-driven vdP in the
deep quantum regime. To study frequency entrainment of
the oscillator, we employ the observed frequency @gy,
defined as the frequency for which the power spectrum
S(w) attains its maximum. When the oscillator is only
weakly entrained, m,,, remains close to the initial detuning
A. For strong entrainment, o, shifts towards @ = 0 as
the system now oscillates at a frequency close to the
external drive.

In Figs. 3(a) and 3(b), we compare the observed
frequency o, for a squeezing- and harmonically driven
vdP, respectively. We observe that squeezing produces
stronger entrainment, which can be explained by the fact
that the Arnold tongue is independent of the damping rates.
In the case of a harmonic drive, we observe virtually no
frequency entrainment even for very small values of
detuning A as already noted in [11]. This is because the
harmonic drive is too weak to overcome the noise inher-
ently present in the vdP and counteracting the drive’s efforts
to entrain it. The behavior of the power spectrum S(w) is
displayed in Figs. 3(c) and 3(d). Stronger squeezing 7
produces a sharper distribution of frequencies leading to
“cleaner” frequency entrainment as quantified by the
spectrum’s vanishing full width at half maximum o, plotted
in Fig. 3(e). This is in contrast to the harmonic drive, which
has the opposite effect. Here, a stronger driving F produces
frequency distributions with increasing o, as shown in
Fig. 3(g). Finally, we note that both types of driving are
capable of producing nonclassical steady states of the
oscillator mode as witnessed by the Mandel Q,, parameter,
defined in the steady state as Q,, = [(An)%, — @i]/7 [41],
where 7 =b'h and i = (i),,. Negativity of Q) is a
sufficient condition for the field to have sub-Poissonian
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w/m

FIG. 3. Entrainment of squeezing- and harmonically driven
vdP. Ratio of dissipative processes for all subplots is y,/y; = 3.
(a) Four slices of the Arnold tongue at various squeezing
parameters # show that squeezing produces stronger entrainment
when compared with a harmonic drive, shown in (b). (c),(d)
Power spectrum S(w) when A/y; = 0.3. Stronger squeezing
produces narrower frequency distribution, while the harmonic
drive has the opposite effect and causes broadening. This is
highlighted by the solid black lines representing FWHM o of
S(w) in (e) and (g). The shaded regions of (e) and (f) mark where
Q) (dashed orange line) is negative. (f) Harmonic drive, on the
other hand, produces a steady state of vdP for which Q,, is
negative for all considered values of F.

photon number statistics, while for Q,, > 0 no conclusion
about nonclassicality can be drawn.

Experimental realizations.—We outline two experimental
implementations using trapped ions and an optomechanical
setup. Two implementations using ion traps have been
proposed in [12,28]. We follow the approach of [28] where

the oscillator mode b represents a linearly damped motional
degree of freedom of the trapped ion. This linear damping is
implemented using standard laser cooling techniques [42].
The internal degree of freedom of the ion is driven by a
standing-wave laser field with Rabi frequency resonant
with the first blue sideband transition. In the Lamb-Dicke
regime and when the trapping potentials are tight, this
implements an undriven vdP as witnessed by the character-
istic ring-shaped steady-state Wigner function pictured in
[28] and in Fig. 2(a). Squeezing can be implemented by an
array of techniques such as a combination of standing- and
travelling-laser fields [43], by adiabatically dropping the
trap’s spring constant [44], or by irradiating the ion by two
Raman beams separated in frequency by 2w, [45].

The van der Pol oscillator can also be implemented in a
system containing second-order nonlinearity such as the
“membrane-in-the-middle" system [46]. We consider a
high quality factor membrane where the mechanical dis-
sipation is small. The linear pumping Lindbladian is
equivalent to applying a blue-detuned laser by one
mechanical frequency, whereas the nonlinear damping
can be created by applying a laser red-detuned by two
mechanical frequencies. The driving force in Eq. (3) can be
applied using an electric field gradient created near the

membrane. The squeezing can also be generated electri-
cally by modulating the spring constant at twice the
mechanical frequency [47].

Discussion.—In this Letter, we considered the important
problem of noise in the quantum regime of the vdP
oscillator. We demonstrated the control of the dynamics
by introducing a squeezing Hamiltonian that counteracts
the adverse effects of the noise while maintaining the
interesting features of synchronization. This follows impor-
tant work showing that including quantum effects can
either have favorable [35] or deleterious effects [48] on the
quality of synchronization. Our analysis shows that the
coherent drive can be replaced by a squeezing drive
producing stronger entrainment and a better quality of
synchronization as measured by the FWHM of the power
spectra. Finally, following the original proposals by
[11,28], we also propose an ion trap and optomechanical
implementations of the squeezing-driven vdP.

Generalizing this idea, consider a network of N self-
sustaining oscillators which are weakly coupled and in the
synchronization regime. Once synchronized, there exists a
critical maximum number of oscillators that can be
unsynchronized such that after transient behavior they
may resynchronize with the network [49]. Owing to
stronger frequency entrainment in the quantum regime,
the existence of a small number of squeezing-driven
oscillators in the network could help stabilize the whole
network against such disruptions better than the harmoni-
cally driven analogue. Such squeezing-driven vdPs could
herald quantum technologies inspired by synchronization
in the quantum regime.
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