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Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the
dominantmultipoles ðl ¼ 2; jmj ¼ 2Þ of the radiation during inspiral, merger, and ringdown.We introduce a
simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a
frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are
appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for
the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity
simulations is required.We apply a variant of this method to the nonprecessing PhenomDmodel. The result,
PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and
currently includes the ðl;jmjÞ¼ð2;2Þ;ð3;3Þ;ð4;4Þ;ð2;1Þ;ð3;2Þ;ð4;3Þ radiative moments. Comparisons with
numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-
only models for all binary configurations, and typically improves the measurement of binary properties.
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Introduction.—Gravitational waves (GWs) are our most
direct means of observing black hole binary mergers [1–5].
Physical measurements from Advanced LIGO (aLIGO)
and Virgo observations rely on agreement between exper-
imental data and theoretical models of the GW signal
emitted during inspiral, merger, and ringdown [3,6–8]. To
date, these models include only the signals’ dominant
multipoles (l ¼ 2, jmj ¼ 2. This may be sufficient when
the black holes (BHs) have comparable masses, or the
signal is weak, but for binaries where one BH is more
massive than the other (even by a ratio of only 1∶3 [9–12]),
modeling the subdominant multipoles could significantly
improve measurement accuracy, or avoid large biases.
Currently, higher multipoles have been modeled through

merger only for nonspinning binaries [13,14], or restricted
corners of theparameter space [15].Generic higher-multipole
models exist only for the inspiral, e.g., Refs. [16–18]. They
can also be calculated for individual binary configurations
fromnumerical relativity (NR) simulations (seeFig. 1), but an
analytic, higher-multipole model of spinning binaries would
be extremely valuable. Even an approximate model would
make it possible to assess the importance of highermultipoles
in interpreting a GW observation, without the direct use of
computationally expensive NR simulations.

FIG. 1. A GW signal decomposed into its multipolar contri-
butions, for a system with mass ratio 1∶8 and spin on the larger
BH of χ1 ¼ S1=m2

1 ¼ ð0; 0;−0.5Þ. Our model (PhenomHM)
is included as solid (m ¼ l) and dashed (m ¼ l − 1) black
lines. Numerical Relativity (NR)multipoles are displayed
in gray, thick lines. Axes are in dimensionless units, where M
is the total system mass and dL is the source’s luminosity
distance.
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This need hasmotivated the flexible constructionwe present
here: we use basic results from post-Newtonian (PN) and
perturbation theory to map the dominant multipole into its
subdominant counterparts. Our approach can be applied to
any frequency-domain model, and may accelerate the
further development of higher-multipole models. Here,
we construct an explicit model, PhenomHM, by extending
PhenomD, a non-higher-multipole model tuned to NR [19].
We demonstrate the accuracy improvement when higher
multipoles are added, which, in turn, boosts our ability to
recover source parameters, particularly distance and orien-
tation. Figure 1 illustrates an application of our new model
by comparing its prediction for various multipoles of the
GW signal of a spinning binary with a mass ratio of 1∶8 to
the same multipoles as determined by a NR simulation. For
the same system, a total mass of 90 M⊙, a distance of
500 Mpc, and an inclination of ι ¼ π=3, Fig. 2 illustrates
the impact of higher multipoles on the total GW strain,
h ¼ hþ − ih×. When compared to the dominant-multipole
model, PhenomHM reproduces the signal far more accu-
rately. This level of agreement is achieved without any
additional tuning to NR waveforms.
Methods.—We consider the GW strain decomposed into

spin weight −2 spherical harmonics [22]

hðt; λ⃗; θ;ϕÞ ¼
X
l≥2

X
−l≤m≤l

hlmðt; λ⃗Þ−2Ylmðθ;ϕÞ; ð1Þ

where t is the time, λ⃗ denotes the intrinsic parameters
(masses, spins), and θ and ϕ are the spherical angles in a
source-centered coordinate system with the its z axis along
the orbital angular momentum. We first describe model-
agnostic transformations between the Fourier representa-
tions h̃22 and the various subdominant multipoles h̃lm by
using the analytic relationships of PN and BH perturbation
theory. Figure 1 shows that all of the multipole amplitudes
are qualitatively similar, suggesting that an appropriate
transformation of the (2,2) multipole’s amplitude could
conceivably be sufficient to approximate each of the
other multipoles. A similar observation applies to each
multipole’s phase (or the phase derivative, which is often a
more instructive quantity [23]). We construct a simple
transformation that achieves this. We separate each GW
multipole into amplitude AlmðfÞ and phase φlmðfÞ,

h̃lmðfÞ ¼ AlmðfÞ × exp fiφlmðfÞg ð2Þ
≈jβlmðfÞjA22ðfA22Þ×expfi½κðfÞφ22ðfφ22ÞþΔlmðfÞ�g: ð3Þ
Equation (3) emphasizes that we construct h̃lm by mapping
f22, and the related amplitude and phase functions, A22 and
φ22, into f, AlmðfÞ, and φlmðfÞ. The frequency, amplitude,
and phase transformations are simple linear mappings
between the radiative mass quadrupole h̃22 and other
multipole moments [24]. For compactness, we refer to
our procedure as quadrupole mapping.
Our construction is motivated by three aspects of PN and

quasi-normal mode (QNM) theory. First, during inspiral, the
time-domain oscillation frequency of each ðl; mÞ multipole
is approximatelymΩ, whereΩ is the binary orbital frequency.
In this approximation, the frequency f of each multipole
corresponds to a (2,2)-multipole frequency of 2f=m.
Second, the stationary phase approximation allows the

association of these frequencies with values in h̃lmðfÞ’s
domain [25–27]. Simultaneously, the stationary phase
approximation (SPA) approximates each amplitude,
beyond leading order in frequency [17,28]. We use the
SPA amplitude ĤlmðfÞ to appropriately rescale h̃22 by

βlmðfÞ ¼
ĤlmðfA22Þ
Ĥ22ðfA22Þ

�
ĤlmðfÞ

Ĥlmð2f=mÞ

�
: ð4Þ

With this rescaling choice we divide away the low order
behavior of h̃22ðfA22Þ, and then scale by ĤlmðfA22Þ. The
factor in parentheses is required to recover ĤlmðfÞ at low
frequencies. While ĤlmðfÞ is provided in, e.g., Ref. [28] up
to 2PN order, we use a restricted version of their results to
enforce regular behavior at high frequencies. For
ðl; mÞ ¼ ð2; 1Þ, we use 1.5PN order to approximate spin
dependence. For the other multipoles, which depend
weakly on spin effects, we use only leading PN order in
f. Although we have presented a minimal formulation of
βlm, βlm ¼ ĤlmðfÞ=Ĥ22ðfA22Þ performs slightly better for
spin-aligned systems.

FIG. 2. The system considered in Fig. 1, with an inclination of
ι ¼ π=3, a total mass of 90 M⊙, and a distance of 500 Mpc. In
each panel, the NR data are displayed in gray, thick lines. The
PhenomHM and PhenomD models are shown in thin black lines
that are continuous and dashed, respectively. Top panel: a time
domain comparisons of plus polarizations. Bottom panel: a
comparison of frequency domain amplitudes. Modeled aLIGO
and Einstein Telescope noise spectral densities [20,21] are
displayed in dashed-dotted and dotted black lines, respectively.

PHYSICAL REVIEW LETTERS 120, 161102 (2018)

161102-2



Lastly, QNM theory implies that ringdown frequencies
of different h̃lm are related by the difference between the
fundamental QNM frequencies of the (2,2) and ðl; mÞ
multipoles, fRDlm − fRD22 .
To bridge the “gap” between the PN and QNM regimes,

we find that linear interpolation is sufficient. The result of
this choice is a piecewise-linear mapping,

f22ðfÞ ¼

8>>><
>>>:

2
mf; f ≤ f0;
fRD
22

−2f0=m
fRDlm−f0

ðf − f0Þ þ 2f0
m ; f0 < f ≤ fRDlm;

f − ðfRDlm − fRD22 Þ; f > fRDlm:

ð5Þ

As is done in PhenomD, we optimized agreement with NR
simulations by allowing different values of f0 for the
amplitude and phase, hence the distinction between fA22
and fφ22 in Eq. (3). Here, we use fA0 ¼ 0.018fRDlm=f

RD
22 ,

fφ0 ¼ 0.014fRDlm=f
RD
22 , and fRDlm ¼ ωlm0=2π, where ωlm0 is

the real-valued frequency of the fundamental QNM.
Equation (5) is sufficient to relate the frequency-domain
phase derivatives of all multipoles to each other,
φ0
lmðfÞ ≈ φ0

22½f22ðfÞ�. Integrating once yields the phase
relation that contains the inverse of the derivative of f22
(where we understand the derivative at each boundary as
the limit from lower frequencies toward that boundary).
The additional, multipole-dependent phase offsets is deter-
mined from continuity and PN theory. The resulting
coefficients read

κ ¼ 1

f022ðfÞ
ðpiecewise constantÞ; ð6Þ

Δlm ¼

8>><
>>:

π
2
½3lþmod ðlþm; 2Þ� − π; f ≤ fφ0 ;

φlmðfφ0 Þ − κφ22½fφ22ðfφ0 Þ�; fφ0 < f ≤ fRDlm;

φlmðfRDlmÞ − φ22½fφ22ðfRDlmÞ�; f > fRDlm:

ð7Þ
The phase shifts introduced explicitly for f < fφ0 reflect
mass and current multipole separation (see, e.g., Eq. (326)
of Ref. [24]) as well as the necessary symmetry properties
of each multipole [24,29].
Equations (3)–(7) constitute a minimalistic model-

agnostic method to map the dominant into subdominant
multipoles.
Application to PhenomD.—Given a dominant multipole

model, further refinements may be applied. We consider
PhenomD [19,23]. Comparison with NR data shows that
the phase resulting from Eq. (5) is least accurate for
frequencies just below fRDlm, where f22ðfÞ’s linear inter-
polation does not ensure a simple shift from fRD22 to fRDlm , but
rather a shift with some nonunity slope.
A simple extension of the PhenomD phase ansatz and a

compatible adjustment of f22ðfÞ for f > fRDlm are sufficient
to impart the correct behavior prior to the ringdown

frequency. In the merger-ringdown phase ansatz,
Eq. (14) of Ref. [19], we add factors of fRD22 =f

RD
lm to the

last term, and use the appropriate damping frequency
for each QNM. The modified parts of the model are

f22ðfÞ ¼
8<
:

fRD
22

fRDlm
f; f > fRDlm;

see Eq: ð5Þ; otherwise;
ð8Þ

ϕlm
MRðfÞ ¼

1

η

2
4α0 þ α1f − α2f−1 þ

4

3
α3f3=4

þα4
fRD22
fRDlm

tan−1

0
@f − α5fRD22

fRD
22

fRDlm
fdamp
lm

1
A
3
5: ð9Þ

Equations (3)–(9) define PhenomHM via the mapping of
PhenomD.
Results.—We compare PhenomHM to NR simulations to

assess its accuracy and utility. We consider the simulations
used to calibrate the dominant-multipole PhenomD model,
performed with the BAM [30,31] and SPEC [32,33] codes.
The simulations cover mass ratios from 1∶1 to 1∶18, and
spin magnitudes up to 0.85 (and up to 0.98 for equal-mass
configurations). We test PhenomHM in three ways. (i) We
first confirm that an inverse Fourier transform of each
multipole produces qualitatively correct time-domain
waveforms without pathological features. (ii) We calculate
a noise-weighted normalized inner product (match)
between the NR waveforms and the model to estimate
the accuracy of the model, which is crucial for GW search
and parameter-estimation purposes. (iii) We perform
parameter-estimation studies to gauge the impact of higher
multipoles on GW measurements.
The match between PhenomHM and NR, ðhHMjhNRÞ, is

weighted by the anticipated aLIGO noise power spectrum
at design sensitivity [20] and calculated following Eq. (2)
of Ref. [34], with a starting frequency fmin ¼ 30 Hz. The
NR waveforms contain all multipoles with l ≤ 5 and the
PhenomHM waveforms include multipoles with l ¼ jmj ≤
4 and jmj ¼ l − 1. The PhenomHM template waveform is
taken with the same intrinsic parameters ðM1;M2; χ1; χ2Þ
and inclination ι as the NR signal and the match is
optimized over the time of arrival, template polarization,
and initial orbital phase.
Figure 3 presentsmatches for all 19NRwaveforms used to

calibrate PhenomD. The dominant-multipole-model results
(left) would be almost identical for any accurate model of the
(2,2) multipole. As the matches vary with the source’s
polarization and orbital phase angles, we show average
values after appropriately accounting for variations in the
signal strength (see, e.g., Ref. [10]). For face-on (ι ¼ 0) and
face-off inclinations (ι ¼ π), the PhenomHM match (right)
marginally decreases relative to the dominant-multipole
model due to inaccuracies in the PhenomHM ðl; mÞ ¼
ð3; 2Þmultipole. However,PhenomHM displays consistently
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higher matches than a dominant-multipole model for all
inclined systems. As the mass ratio increases, the perfor-
mance of the dominant-multipolemodel rapidly degrades for
edge-on configurations, but remains high for PhenomHM.
For nonspinning systems, PhenomHM typically has

matches higher than 0.99 for mass ratios less than or equal
to 8. Thematches degrade for high-mass-ratio, high-aligned-
spin systemswith edge-on inclination, and thematch average

over polarization and source orbital phase can be as low as
0.93, for a mass-ratio 1∶18 system with χ1 ¼ 0.4. However,
the worst matches correspond to inclinations that suppress
the dominant mode, making these signals significantly
weaker, and therefore less likely to be observed.
As a more detailed check, we calculated multipole-by-

multipole matches between NR and PhenomHM for each
waveform. Most individual multipoles match at 0.99 or
better. The quality of agreement degrades for high aligned
spin. Discounting cases with component spins of 0.75 or
greater, the average match is ∼0.98 for ðl; mÞ ¼ ð4; 4Þ, and
0.99 and above for all other l ¼ m cases. Spherical-
spheroidal mixing significantly impacts (3,2) and (4,3),
so their average match is ∼0.92 [35]. We also broadly
checked the accuracy of the individual multipole ampli-
tudes by comparing the signal-to-noise ratio (SNR) in each
between the NR and PhenomHM results. The subdominant
multipoles typically have amplitude errors much less than
15%, which we consider acceptable, given that our goal
was to achieve an order-of-magnitude estimate.
We expect that the main value of PhenomHM will be in

parameter recovery. To assess this, we injected NR wave-
forms in zero noise [36] and performed a parameter
recovery analysis similar to Ref. [37] with PhenomD
and PhenomHM using LALINFERENCE [6,38,39]. Our
injected signals have a network SNR of ∼25. For configu-
rations with a variety of mass ratios and spins, the
inaccuracies in PhenomHM did not lead to appreciable
biases in recovering masses and spins for SNRs of ∼25. A
more detailed parameter-estimation study is in preparation.
Relative to PhenomD, PhenomHM can significantly

improve source inclination measurements. This is not
surprising: higher multipoles have an inclination dependent
impact on signal morphology, as seen in Fig. 2 for a specific
case. In Fig. 4 we show an example of a 100 M⊙ binary with
mass ratio 1∶4 and spins χ1 ¼ χ2 ¼ 0.5, at a distance of

FIG. 3. Matches between models and NR. All curves are
symmetric about ι ¼ pi=2. The NR waveforms contain all
multipoles up to l ¼ 5, while PhenomHM contains multipoles
with l ¼ jmj ≤ 4 and jmj ¼ l − 1. Each curve corresponds to a
NR simulation within the PhenomD calibration region [19]
scaled to 100 M⊙ with a minimum frequency of 30 Hz. Higher
multipoles are not significant for configurations with M1=M2 ¼
1 (green curves with diamond markers), as opposed to cases
with M1=M2 ¼ 4 (purple curves with circles), and especially
M1=M2 ¼ 8 (orange curves with squares) and M1=M2 ¼ 18
(blue curves with triangles). Each mass-ratio set contains systems
with varying nonprecessing spins [19]. Left panel: average
matches between NR and a model with only l ¼ jmj ¼ 2 multi-
poles. While we used PhenomD, these results are common to all
models that lack higher multipoles. Right panel: matches between
NR and PhenomHM, which shows significant improvement.

FIG. 4. Parameter recovery for a 100 M⊙ mass-ratio 1∶4 binary, with aligned spins χ1 ¼ χ2 ¼ 0.5, optimally oriented to the detector
at a distance of 671 Mpc. The higher-multipole PhenomHMmodel allows us to correctly identify the source orientation and to reduce the
uncertainty in distance by approximately 40%.
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671 Mpc. Since systems with inclination angles near 0
or π are roughly twice as strong as edge-on systems, they can
be observed in a volume of the Universe 8 times larger; thus
we inject the signal face on to the detector. UsingPhenomD,
we recover only our prior expectation for the inclination, and
the 90% credible region for the distance ranges from 299 to
702Mpc.AllGWobservations to date display results similar
to this [2–6]. However, with PhenomHM the binary incli-
nation angle is recovered with an uncertainty of only
0.21 rad (12 deg). The uncertainty in distance is reduced
by∼30%, with the 90% credible region ranging from 475 to
757 Mpc. Here, distance and inclination uncertainty are
dominated by uncertain sky localization,which is drastically
reduced with a three-detector network [5,40,41].
Discussion.—We presented a simple and flexible method

to transform the dominant GW multipole into higher multi-
poles for nonprecessing binary BH systems. This may be
applied to any dominant-multipole-only frequency-domain
model. We introduced the first application of this method to
the phenomenological model PhenomD [19,23], and pro-
duced a more accurate higher-multipole model, which we
call PhenomHM.
Across the entire calibration region of the underlying

PhenomD, mass ratios up to 1∶18, and spins up to 0.85,
PhenomHM agrees better with NR waveforms than the
dominant-multipole-only models. In a first set of parameter-
estimation tests, even for face-on systems, where the higher-
multipole contribution to the signal is weak, PhenomHM
yields a dramatic improvement over PhenomD in recover-
ing the source inclination and distance.
It is striking that simple approximations can be used to

model the subdominant multipoles. In particular, simple
linear transformations are sufficient to capture the qualitative
behavior of the signal throughout inspiral, (nonlinear)
merger, and ringdown. This approach is a means to rapidly
extend any dominant-multipole model to higher multipoles
(including models that treat precession). An extension of
PhenomHM to precessionwill be presented in the near future.
Despite its encouraging performance, further studies are

needed to fully quantify the value of PhenomHM in GW
astronomy. Themost obvious next step is to usePhenomHM
as the basis for a precise tuning of the subdominant multi-
poles to NR waveforms. This work is underway. Several
physical features are also absent fromPhenomHM. Themost
notable is the mixing between jmj ¼ l and jmj ¼ l − 1
multipoles through merger and ringdown [35,42]. An
obvious extension to precessing systems, following the
prescription of PhenomP [43], would also neglect to model
the asymmetry between m > 0 and m < 0 multipoles that
leads to out-of-plane recoil [44].
However, given that the model captures the phenom-

enology of the subdominant multipoles across the binary
BH parameter space, and shows mismatch errors of at most
a few percent, and for much of the parameter space less
than 1%, PhenomHM will make it possible to assess the

importance of subdominant multipoles in GWobservations,
and improve the accuracy of parameter estimates. For high-
mass binaries, where the merger and ringdown dominate
the signal, it will also be valuable in strengthening current
tests of general relativity.
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