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We prove that universal quantum computation can be realized—using only linear optics and χð2Þ (three-
wave mixing) interactions—in any (nþ 1)-dimensional qudit basis of the n-pump-photon subspace. First,
we exhibit a strictly universal gate set for the qubit basis in the one-pump-photon subspace. Next, we
demonstrate qutrit-basis universality by proving that χð2Þ Hamiltonians and photon-number operators
generate the full uð3Þ Lie algebra in the two-pump-photon subspace, and showing how the qutrit
controlled-Z gate can be implemented with only linear optics and χð2Þ interactions. We then use proof by
induction to obtain our general qudit result. Our induction proof relies on coherent photon injection or
subtraction, a technique enabled by χð2Þ interaction between the encoding modes and ancillary modes.
Finally, we show that coherent photon injection is more than a conceptual tool, in that it offers a route to
preparing high-photon-number Fock states from single-photon Fock states.
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Introduction.—Photons are promising information car-
riers for quantum computers, owing to the photon’s
long room-temperature coherence time, high transmission
speed, and high-fidelity preparation schemes [1–4], plus
the availability of efficient photodetectors [5,6], and the
scalable on-chip integration of linear and nonlinear optical
components [7–10]. Architectures for optics-based quan-
tum computation have gone through dramatic develop-
ments over the past two decades [11–16], but significant
obstacles remain to be overcome.
Optics-based quantum computation depends on photon-

photon interactions for the realization of a universal gate set.
The lowest-order photon-photon interactions are described
by unitary transformations of the form Û ¼ expð−iL̂Þ that
are generated by general two-wave mixing Hamiltonians,

L̂ ∈ fðgâ b̂þg�â†b̂†Þ; ðgâb̂† þ g�â†b̂Þg; ð1Þ

where g is a c-number, and â† and b̂† are photon-creation
operators from different optical modes, so that ½â; b̂†� ¼ 0,
or the same optical mode, for which ½â; b̂†� ¼ 1. Unitary
transformations of this form can realize universal single-
qubit rotations in the Fock-state basis but are not universal
for quantum computation without some additional resource.
To implement universal optics-based quantum computation,
four-wave mixing (a χð3Þ interaction) was previously con-
sidered to be the lowest-order optical nonlinearity that will
suffice in this regard [13,17,18]. The inherent weakness
of χð3Þ interactions, however, has precluded their delivering
the high-fidelity gates required to make optics-based quan-
tum computation practical [19–21]. Linear-optical quantum

computation (LOQC) [14,22–24] circumvents the need for
photon-photon interactions through postselection, but this
approach comes with the need for a prohibitive number of
perfect single-photon ancillae to cope with LOQC’s prob-
abilistic nature and the ubiquitous photon loss [15,25–27].
One way to circumvent the weakness of photon-photon

interactions is to employ the lowest-order nonlinearity that
can provide universal quantum computation, viz., the χð2Þ
interaction whose three-wave-mixing Hamiltonians can be
decomposed into linear combinations of the following
terms [28]:

Ĝ1 ¼
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Here, fâ†k∶k ¼ s; i; pg are the photon-creation operators
of the interaction’s signal, idler, and pump modes, and the
real-valued κ quantifies the interaction’s strength.
The efficiencies of χð2Þ interactions have been steadily

improving over the past decade [29–42]. Moreover, owing
to the importance of χð2Þ interactions in quantum state
transduction for superconducting and ion-trap qubits, the
platforms of interest for χð2Þ interactions have expanded
beyond traditional nonlinear crystals [37–42], bringing full
utilization of their quantum dynamics closer to reality.
Coherent photon conversion, i.e., χð2Þ interactions

defined in Eq. (2) in which the signal, idler, and pump
modes are all quantum mechanical, was first proposed by
Koshino [43], and later used by Langford et al. [29] to show
how universal quantum computation can be realized with

PHYSICAL REVIEW LETTERS 120, 160502 (2018)

0031-9007=18=120(16)=160502(6) 160502-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.160502&domain=pdf&date_stamp=2018-04-18
https://doi.org/10.1103/PhysRevLett.120.160502
https://doi.org/10.1103/PhysRevLett.120.160502
https://doi.org/10.1103/PhysRevLett.120.160502
https://doi.org/10.1103/PhysRevLett.120.160502


that resource in the single-photon qubit basis. We refer to
such interactions as full-quantum χð2Þ interactions, to
distinguish them from pumped χð2Þ interactions, in which
a nondepleting coherent-state pump reduces Eq. (2) to the
two-wave interactions shown in Eq. (1). Langford et al.’s
groundbreaking work, however, is not without drawbacks.
Available schemes for correcting photon loss [11,44–46],
viz., the dominant error in photonic quantum computation,
require either measurement-based or χð3Þ gates on the
encoded basis. Thus, Ref. [29] does not provide a χð2Þ
approach that facilitates photonic quantum computation
that is robust to photon loss.
In this Letter, and its companion paper [47], we show

how the work of Langford et al. can be extended to a more
natural computational basis for χð2Þ-based quantum com-
putation in which photon-loss errors can be addressed.
More generally, we prove that χð2Þ interactions plus linear
optics can provide a strictly universal gate set for quantum
computation in any (nþ 1)-dimensional qudit basis of the
n-pump-photon subspace. Because any d-qudit unitary gate
can be described by a Lie group element of SU½ðnþ 1Þd�,
the universality of a given class of Hamiltonians is directly
related to that class’s Lie algebra and the Lie group it
generates via the exponential map [48]. Thus, we use Lie-
algebra analysis to identify code subspaces that are closed
under χð2Þ Hamiltonian evolutions [50,51]. Our Lie-algebra
analysis underlies the symmetry-operator formulation of
qudit-basis error-correcting codes for photon-loss errors
and the universal gate-set constructions in the encoded
basis that we report in Ref. [47]. Hence, our proposal
provides a χð2Þ approach to photonic quantum computation
that is robust to photon loss. We begin the development
of our universality results with a summary of the linear
optics and the χð2Þ resources we shall employ. We follow
with qubit and qutrit universality proofs, as preludes to
our induction proof for the general qudit case.
Linear optics and χð2Þ resources.—The linear optics

resources we require are readily available: dichroic mirrors
and phase shifters. The pumped χð2Þ resource we require is
quantum-state frequency conversion (QFC) [52–54], which
converts a frequency-ωin single-photon Fock state to a
frequency-ωout single-photon Fock state. The full-quantum
χð2Þ resources we require are second-harmonic generation
(SHG), which converts a frequency-ωin two-photon Fock
state to a frequency-2ωin single-photon Fock state; type-I
phase-matched spontaneous parametric down-conversion
(SPDC), which converts a frequency-2ωin single-photon
Fock state to a frequency-ωin two-photon Fock state;
and generalized sum-frequency generation (SFGθ), which
accomplishes the state transformation

SFGθj1; 1; 0i ¼ cosðθÞj1; 1; 0i þ sinðθÞj0; 0; 1i; ð3Þ

where jns; ni; npi denotes a three-mode Fock state con-
taining ns frequency-ωs signal photons, ni frequency-ωi

idler photons, and np frequency-ωp pump photons, with the
pump’s frequency satisfying ωp ¼ ωs þ ωi. (See the
Supplemental Material [55] for more information.)
Universality in the qubit basis.—The Lie group gener-

ated by χð2Þ Hamiltonian evolutions is a subgroup of the
unitary group U; hence, it is compact. A compact Lie
group, together with its generating Lie algebra, are com-
pletely reducible. This means that they can be written as a
direct sum of irreducible representations over the state
space H≡ ⊕∞

n¼1 Hn, whose irreducible subspaces, fHng,
are labeled by their pump mode’s maximum photon
number n; i.e., they are the n-pump-photon subspaces
spanned by the three-mode Fock-state bases fj0; 0; ni;
j1; 1; n − 1i;…; jn; n; 0ig. For qubit universality, we there-
fore encode in the one-pump-photon subspace H1, using
the three-mode Fock states,

j0̃i ¼ j1; 1; 0i; j1̃i ¼ j0; 0; 1i; ð4Þ

for our logical-qubit basis states. Here, the signal and
idler are both at frequency ω with orthogonal polarizations,
the pump is at frequency 2ω, and all three share a common
spatial mode. Universality is proved by the following
theorem:
Theorem 1.—Universal quantum computation can be

realized with χð2Þ interactions and linear optics in any qubit
basis of the one-pump photon subspace.
Proof: The χð2Þ Hamiltonians, Ĝ1 and Ĝ2, defined in

Eq. (2) are proportional to the Pauli Ŷ and Pauli X̂ operators
in the logical-qubit basis, which are universal for realizing
single-qubit rotations. So, to complete our χð2Þ universality
proof for the logical-qubit basis in Eq. (4), it suffices for
us to show that we can construct a controlled-Z qubit gate
for that basis [12], i.e., a gate (denoted Λ2½Z� in what
follows) that imparts a π-rad phase shift to the j1̃icj1̃it
component of the joint state of the control (subscript c)
and target (subscript t) qubits. Moreover, becauseΛ2½Z� can
be sandwiched between single-qubit χð2Þ rotations to
achieve the controlled-Z function in any H1 qubit basis,
Theorem 1 will be proved once we have established how to
realize Λ2½Z�.
Figure 1 shows our optical circuit [59] for the Λ2½Z� gate

for the logical-qubit basis in Eq. (4). The control and target
qubits enter on the upper and lower rails, respectively.
QFC1 shifts the frequency of the control qubit’s pump
photon (if present) from 2ω to 2ω0, so that dichroic mirrors
(DMs) are able to direct pump photons from the control
and target qubits to the center rail’s SFGπ gate, where they
serve as modes 1 (frequency ω1 ≡ 2ω0) and 2 (frequency
ω2 ¼ 2ω). This gate imparts a π-rad phase shift if and only
if pump photons are present from both the control and
target qubits. Thus, after another set of DMs restore the
control and target pump photons to the top and bottom rails,
respectively, the Λ2½Z� gate—and hence the proof of
Theorem 1—is completed by QFC2, which shifts the
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frequency of the control qubit’s pump photon (if present)
from 2ω0 to 2ω. Note that each χð2Þ element in Fig. 1 acts
on only one of its potentially excited bosonic-mode
inputs; e.g., QFC1 affects its pump-mode input but
neither its signal-mode input nor its idler-mode input.
Such modal selectivity puts a burden on experimental
realization. In particular, QFC1 and QFC2 will require a
different nonlinear medium than will SFGπ . This diffi-
culty, however, may disappear once high-efficiency
nondepleted χð3Þ induced χð2Þ interactions become
available [29,34,35].
Universality in the qutrit basis.—For qutrit universality,

we encode in H2 using the three-mode Fock states

j0̃i ¼ j1; 1; 1i; j1̃i ¼ j2; 2; 0i; j2̃i ¼ j0; 0; 2i; ð5Þ

for our logical-qutrit basis states. Here, the signal and idler
have frequency ω and are orthogonally polarized, while the
pump has frequency 2ω, and all three share a common
spatial mode. These states can be prepared by type-II
phase-matched SPDC in the two-pump-photon subspace
[36], and are naturally confined to this subspace under χð2Þ
interactions. It follows that restricting linear combinations
of the χð2Þ Hamiltonians, Ĝ1, Ĝ2, the modal photon-number
operators, fN̂k ≡ â†kâk∶k ¼ s; i; pg, and the nested com-
mutators of these operators to the two-pump-photon sub-
space H2 constitutes a Lie algebra g. The Lie group H
associated with g is found from the exponential map
exp ∶g → H, where for each group element ĥ ∈ H, ∃Ê ∈
g and t ∈ R such that ĥ ¼ expðitÊÞ. For simplicity, in all
that follows, we set κ ¼ 1 in the Hamiltonians Ĝ1 and Ĝ2.
We begin our universality demonstration with a theorem
about g.
Theorem 2.—The Lie algebra g is uð3Þ.
Proof: First, we prove that uð3Þ ⊆ g. From the original

χð2Þ Hamiltonians Ĝ1 and Ĝ2, we can obtain all trans-
formations generated by linear combinations of Ĝ1, Ĝ2,
N̂s, N̂i, N̂p and their nested commutators. Using the vector
vT ≡ ½ v0v1v2 � to represent the qutrit jψi ¼ v0j1; 1; 1iþ
v1j2; 2; 0i þ v2j0; 0; 2i, we obtain thematrix representations
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†
i âp − âsâiâ
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Ĝ8 ¼
1

2
ð1 − N̂pÞ ¼

1

2

2
64
0 0 0

0 1 0

0 0 −1

3
75; ð13Þ
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for all the independent generators,where the secondequalities
apply in the two-pump-photon subspace H2. It is then
straightforward to verify that the Gell-Mann matrices arising
from linear combinations of the above generators are

λ̂1 ¼ Ĝ4=3; λ̂2 ¼ −Ĝ5=3; ð15Þ

λ̂3 ¼ 2Ĝ8 þ Ĝ3; λ̂4 ¼
ffiffiffi
2

p
ðĜ2 − Ĝ4=3Þ; ð16Þ

λ̂5 ¼
ffiffiffi
2

p
ðĜ1 − Ĝ5=3Þ; λ̂6 ¼ 4Ĝ6=3; ð17Þ

λ̂7 ¼ 4Ĝ7=3; λ̂8 ¼ ðĜ3 þ 6Ĝ8Þ=
ffiffiffi
3

p
: ð18Þ

target

DM DM

DM DM

DM DMSFG

QFC1 QFC2control

FIG. 1. Schematic for constructing the Λ2½Z� gate in the logical-
qubit basis [Eq. (4)] using χð2Þ interactions and linear optics.
QFC1 and QFC2: Quantum-state frequency conversions. DM:
Dichroic mirror. SFGπ : Generalized sum-frequency generation
(3) with θ ¼ π.
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Gell-Mannmatrices areone representationof the complete set
of linearly independent generators for the suð3Þ Lie algebra.
Togetherwith Ĝ9, they form the complete set of generators for
uð3Þ, proving that uð3Þ ⊆ g.
We complete our proof of Theorem 2 by showing that

g ⊆ uð3Þ. Because the two-pump-photon subspace H2 is
closed under g, every Lie group element ĥ ∈ H is generated
by an Ê ∈ g via ĥ ¼ expðitÊÞ for some t ∈ R. As expðitÊÞ
is a unitary transformation in the two-pump-photon sub-
space, we have H ⊂ Uð3Þ. Furthermore, this condition
holds if and only if g ⊆ uð3Þ, thus finishing Theorem
2’s proof.
References [60–62] show that if operators fĜkg and their

nested commutators generate the Lie algebra uð3mÞ, they
can then be used to construct a universal set of unitaries
UkðtÞ ¼ expð−itĜkÞ in the m-qutrit subspace. Setting
m ¼ 1, we have the following claim:
Claim 1.—Universal single-qutrit rotations can be real-

ized with χð2Þ interactions.
Universal qutrit computation entails not only universal

single-qutrit unitary gates but also universal two-qutrit
unitary transformations in H⊗2

2 , so we need the following
theorem:
Theorem 3.—Universal qutrit quantum computation can

be realized with χð2Þ interactions and linear optics in any
qutrit basis of the two-pump-photon subspace.
Proof: From Claim 1, we know that arbitraryUð3Þ qutrit

rotations can be realized with χð2Þ interactions. It is also
known [12,63–65] that a universal single-qutrit gate set
plus a controlled-Z gate for the logical-qutrit basis in
Eq. (5)—denoted Λ3½Z�—are universal for qutrit compu-
tation in any qutrit basis of the two-pump-photon sub-
space H2.
The Λ3½Z� gate realizes the unitary transformation

Λ3½Z�jj̃icjk̃it ¼ ð−1Þδj̃ 2̃δk̃ 2̃ jj̃icjk̃it for states in H2, where
δuv is the Kronecker delta. Figure 2 shows how this gate can
be realized using χð2Þ interactions and linear optics. The
control and target qubits enter on the upper and lower rails,
respectively, where second-harmonic generators (SHGs)
convert two-photon Fock-state pumps at frequency 2ω to a
single-photon Fock state at frequency 4ω. The shaded block
labeled Λ2½Z� is the same gate shown in Fig. 1, except that

(i) its QFC1 converts a frequency-4ω single-photon Fock
state to a frequency-4ω0 single-photon Fock state, (ii) its
first set of DMs route the frequency-4ω0 photon (if present)
from the upper rail and the frequency-4ω photon (if
present) from the lower rail to the SFGπ block on the
center rail, (iii) its SFGπ block is arranged to apply a π-rad
phase shift to the state j1; 1; 0i, whose first two entries are
the photon numbers of its frequency-4ω0 and frequency-4ω
inputs, (iv) its second set of DMs return the frequency-4ω0
and frequency-4ω photons to the upper and lower rails,
respectively, and (v) its QFC2 converts a frequency-4ω0
single-photon Fock state to a frequency-4ω single-photon
Fock state. The SPDC blocks then complete the Λ3½Z�
gate—by converting frequency-4ω single-photon Fock
states (if present) to frequency-2ω two-photon Fock
states—because the Λ2½Z� block has imparted a π-rad
phase shift to the j2̃icj2̃it component of the original input
state. Together with Claim 1, the Λ3½Z� construction proves
Theorem 3.
Universality in the (nþ 1)-dimensional qudit basis.—

The culmination of our χð2Þ universality work is the
following theorem:
Theorem 4.—Universal qudit quantum computation can

be realized with χð2Þ interactions and linear optics in any
(nþ 1)-dimensional basis of the n-pump-photon subspace.
Proof: Our proof is by induction. We have already

shown that Theorem 4 holds for n ¼ 1 and n ¼ 2. The
induction proof is completed by assuming that Theorem 4
holds for n ¼ m, and then showing that it holds for
n ¼ mþ 1. The details appear in Ref. [55]. Here we just
note that they involve a Lie-group result [51,66] and
coherent photon injection or subtraction. Coherent photon
injection and subtraction are full-quantum χð2Þ interactions
between the encoded modes and ancillary modes. Although
used as a conceptual tool in the proof of Theorem 4,
coherent photon injection has independent merit owing to
its enabling preparation of high-photon-number Fock states
from single-photon Fock states. Thus, we devote the next
section to its description.
Coherent photon injection.—The coherent photon injec-

tion used in our universality proof is a generalization of a
result from Hubel et al. [67]. To illustrate how it works,
suppose we start with the qubit-basis state j1̃i ¼ j0; 0; 1i
from Eq. (4) with the goal of generating the qutrit-basis
state j2̃i ¼ j0; 0; 2i from Eq. (5). Coherent photon injection
accomplishes this task as follows: We adjoin the j0; 0; 1i
system with an ancillary pump mode (photon-creation
operator â†p0) that has the same frequency as, but is
orthogonally polarized to, the pump mode of j0; 0; 1i.
We then turn on the χð2Þ interaction Ĝ2a ¼ ½â†s â†i âp0þ
âsâiâ

†
p0 � between the original signal-idler modes and the

ancillary pump mode to realize the transformation
eiπĜ2a=2j0; 0; 1ij1ia ¼ j1; 1; 1ij0ia. This coherent photon
injection has transformed the qubit-basis state j1̃i ¼
j0; 0; 1i in the one-pump-photon subspace to the qutrit-basis

SHG SPDC

SPDCSHG

control

target

FIG. 2. Schematic for constructing the Λ3½Z� gate in the logical-
qutrit basis (5) using χð2Þ interactions and linear optics. SHG:
Second-harmonic generation. Λ2½Z�: The optical circuit from
Fig. (1) with modifications described in the text. SPDC: Type-I
phase-matched spontaneous parametric down-conversion.
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state j1̃i ¼ j1; 1; 1i in the two-pump-photon subspace. A
qutrit-basis χð2Þ gate can now rotate j1̃i to j2̃i in the two-
pump-photon subspace [55]. Insofar as the pump mode is
concerned, this overall procedure has converted a single-
photon Fock-state input to a two-photon Fock-state output.
The injection process can now be repeated to transform
j0; 0; 2i to j1; 1; 2i, after which a χð2Þ-enabled rotation in the
three-pump-photon subspace will yield j0; 0; 3i. In this
manner, high-photon-number Fock states can be prepared
using only single-photon sources and full-quantum χð2Þ
interactions.
Conclusions.—We have shown that universal optics-

based quantum computation using only linear optics and
χð2Þ interactions is possible in any (nþ 1)-dimensional qudit
basis of the n-pump-photon subspace, with the natural basis
being the three-mode Fock states fj0; 0; ni; j1; 1; n − 1i;…;
j0; 0; nig of frequency-ω, orthogonally polarized signal and
idler modes, and a frequency-2ω pump mode, all of which
share a common spatial mode. Our work extends the usual
gate-model universality to the universality of χð2Þ
Hamiltonian interactions in their irreducible subspaces.
Such extension facilitates error correction for photon loss
by providing a symmetry-operator formalism for hardware-
efficient quantum error correction [47]. Moreover, Lie
algebraic understanding of χð2Þ interactions opens a path
for defining an Abelian group that would enable fault-
tolerant quantum computation that is robust to photon loss
and physical rotation errors. To reach the end of that path,
however, will require technology development.
The resources required for our qudit-basis χð2Þ quantum

computation are single photon sources and linear optics,
plus χð2Þ interactions. High-quality linear optics (dichroic
mirrors and phase shifters) are already available, and high-
efficiency quantum-state frequency conversion (the
pumped χð2Þ interaction we need) have been demonstrated.
But because currently available or demonstrated single-
photon sources and full-quantum χð2Þ (SHG, SFGπ, and
SPDC) interactions fall short of what our architectures
require, continued advances in these technologies must
occur before our quantum computation proposals become
practical. There is some reason for optimism in this regard;
e.g., the efficiency of the χð2Þ nonlinearity has been
improved from 10−7 [29] to 10−1 [68] in less than a
decade. Furthermore, state-of-the-art experimental realiza-
tions of strong χð2Þ interactions—including in solid-state
circuits [37], flux-driven Josephson parametric amplifiers
[38,39,42], superconducting resonator arrays [40,41], non-
depleted four-wave-mixing-induced three-wave mixing in
photonic microstructured fibers [29,34,35], χð2Þ inter-
actions inside ring resonators [69], and nonlinear inter-
actions in frequency-degenerate double-lambda systems
[70]—are closing the gap between theory and practical
applications of full-quantum χð2Þ interactions.
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