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When quantum states are used to send classical information, the receiver performs a measurement on the
signal states. The amount of information extracted is often not optimal due to the receiver’s measurement
scheme and experimental apparatus. For quantum nondemolition measurements, there is potentially some
residual information in the postmeasurement state, while part of the information has been extracted and the
rest is destroyed. Here, we propose a framework to characterize a quantum measurement by how much
information it extracts and destroys, and how much information it leaves in the residual postmeasurement
state. The concept is illustrated for several receivers discriminating coherent states.
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Introduction.—Quantum measurements are often associ-
ated with the expectation value of an observable, which
corresponds to a physical quantity, such as the average
energy of a system or the mean photon number. For this, one
has to make repeated measurements on identically prepared
copies of a quantum state (ensemble average). In the context
of quantum information, on the other hand, one usually
considers one-shot measurements. The result of the meas-
urement is described as one out of M possible outcomes,
and the measurement provides some classical information
about the quantum state. Quantum state discrimination is a
special case of this scenario. The receiver who performs the
measurement knows that the state he receives is from a set of
given quantum states with fixed prior probabilities, and he
only needs to identify which state it is.
In the following scenario, referred to as classical-

quantum (CQ) communication [1], Alice encodes her
classical information using a given set of (orthogonal or
nonorthogonal) quantum states and sends a particular
signal state to Bob. Bob constructs a set of measurements
on the signal he receives to decode the information from his
measurement outcomes. In order to make the communi-
cation channel between Alice and Bob as efficient or secure
as possible, Bob should not count on having identical
copies of the same quantum state, but instead, make the
most use of every copy he receives.
In order to characterize the communication channel

between Alice and Bob, one often uses the average error
probability or the mutual information. For a certain class
of pure quantum signals, the average probability for Bob
making an error when decoding Alice’s signal is minimized
by the so-called square-root measurement or by the
Helstrom measurement [2–4]. From a communication
perspective, the mutual information, quantifying how much
information is transmitted between Alice and Bob, is the

more relevant figure of merit [5]. The two concepts are not
equivalent as, for example, minimizing the error probability
does not necessarily result in maximal mutual information.
Bob extracts information about Alice’s state through his

measurement outcome, and the amount of Bob’s informa-
tion is upper bounded by the so-called accessible informa-
tion. In general, it is very often not possible for Bob to
implement an optimal measurement attaining the upper
bound. When Bob performs a von Neumann measurement
given by rank-one projections, the state after the measure-
ment carries no additional information as it only depends
on the measurement outcome, but no longer on the initial
state. Hence, the information that has not been extracted by
Bob is fully destroyed. On the other hand, if Bob performs
a generalized quantum measurement—typically referred to
as positive-operator valued measure (POVM) or probability
operator measure—with operators of rank larger than 1, the
postmeasurement state could still contain some information
about the input state. That residual information can be
extracted through a subsequent measurement to increase
Bob’s total information gain [6–9]. How much information
is extracted by the measurement depends only on the
POVM element. The amount of residual information left in
the postmeasurement state, however, depends on the very
operators used to implement the POVM measurement.
In the full realm of quantum mechanics, very often, the

error probability or the gain of knowledge have been used
to quantify the effectiveness of measurements, and fidelity
measures have been used to quantify the disturbance of
measurements on a quantum state [7–11]. In the present
work, however, we fully characterize a quantum measure-
ment using mutual information as the figure of merit, more
specifically the amount of information that is extracted,
how much information is destroyed, and how much is left
over in the postmeasurement state. We illustrate, with
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practical examples, the power of this approach by looking
at four different measurement schemes for binary coherent-
state discrimination.
Quantum measurements.—In the general scenario of

CQ communication, Alice encodes the information using
an ensemble E of N signal states fρj∶j ¼ 1; 2;…; Ng,
which can be mixed or pure, with prior probability
distribution fηj∶j ¼ 1; 2;…; Ng. Bob, in order to identify
the state he receives from Alice, can perform any
von Neumann or generalized measurement on the state.
The measurement can be either direct, i.e., measuring the
state itself, or indirect by entangling the state to an ancilla
system first and then measuring the ancilla [12]. We
describe Bob’s measurement by an M-element POVM
on the signal state: Π≡ fΠk∶k ¼ 1; 2;…;Mg,P

M
k¼1 Πk ¼ 1. When Bob wants to establish a one-to-

one correspondence between the measurement outcomes
and the full set of signal states, one clearly needs M ≥ N.
For M > N, the most simple scheme is obtained by
grouping the POVM elements; for example, Bob could
associate the measurement outcomes of Π1;…;Πk1 with
the state ρ1.
The initial knowledge of the signal state can be represented

by the statistical operator ρ ¼ P
N
j¼1 ηjρj, where trðρÞ ¼ 1.

The joint probability that the state ρj is sent and that the
measurement outcome is Πk is given by Pðρj;ΠkÞ ¼
ηjtrðΠkρjÞ. The marginal over the label j of the input states,

PΠk
¼

XN
j¼1

ηjtrðΠkρjÞ ¼ trðΠkρÞ; ð1Þ

gives the total probability of having measurement outcome
Πk, and the marginal over the label k of the measurement
outcomes,

P
M
k¼1 Pðρj;ΠkÞ ¼ ηj, is just the prior probability

of the state ρj. The mutual information,

IðE∶ΠÞ ¼ HðEÞ −XM
k¼1

PΠk
HðEjΠkÞ; ð2Þ

quantifies how much information is shared between Alice
and Bob through Bob’s POVM measurement Π. The
Shannon entropy of Alice’s signal is given by HðEÞ ¼
−P

N
j¼1 ηjlog2ηj. The conditional entropy HðEjΠkÞ quanti-

fies Bob’s remaining ignorance about the signal state given
the measurement outcomeΠk. The accessible information of
the ensemble E is defined as the maximal mutual information
attainable over all possible POVMs,

IaccðEÞ ¼ HðEÞ −min
allΠ

XM
k¼1

PΠk
HðEjΠkÞ: ð3Þ

The accessible information and the set of optimal measure-
ments is known in closed form only for very few special

cases, namely, for a communication channel with pure binary
states or with real-symmetric trine states [13–15]. In general,
the accessible information is usually obtained using numeri-
cal optimization methods [16–19]. Holevo’s theorem pro-
vides an upper bound on the accessible information in
terms of the so-called Holevo quantity. Although the
Holevo bound is asymptotically achievable when collective
measurements on a large number of signals are allowed, it is
very often not tight when only single-copy measurements
are allowed [13,20–22].
When Bob’s POVM does not extract all possible

information, he could, at least in principle, perform a
subsequent measurement on the postmeasurement state
to proceed further. Each POVM element corresponds to
a general quantum operation with Kraus operator Ak, where
Πk ¼ A†

kAk [23]. When the measurement outcome for Πk

is obtained, the normalized postmeasurement state ρðkÞj

corresponding to Alice’s state ρj and the new prior
probabilities are [24]

ρðkÞj ¼ AkρjA
†
k

trðΠkρjÞ
and ηðkÞj ¼ ηjtrðΠkρjÞ

trðΠkρÞ
: ð4Þ

They form the ensemble of postmeasurement states EðkÞ,
conditioned on a particular measurement outcome Πk.
Note that we can also express the conditional Shannon
entropyHðEjΠkÞ in Eqs. (2) and (3) as the Shannon entropy
HðEðkÞÞ. To discriminate the postmeasurement states, Bob
then can perform any subsequent POVM. For an optimal
subsequent measurement on EðkÞ, the remaining ignorance
about the ensemble E is reduced to HðEðkÞÞ − IaccðEðkÞÞ.
Then the maximal mutual information between the
ensemble E of signal states and the outcomes of optimal
subsequent measurements is given by

I0maxðE;ΠÞ ¼ HðEÞ −XM
k¼1

PΠk
½HðEðkÞÞ − IaccðEðkÞÞ�; ð5Þ

which only depends on E and Bob’s first measurement Π.
Note that Bob’s final message solely depends on the out-
come of the subsequent measurement, because the result of
the first measurement is incorporated in the updated new

prior probabilities fηðkÞj g for the discrimination of fρðkÞj g.
Therefore, I0maxðE;ΠÞ is never smaller than the mutual
information IðE∶ΠÞ of the first measurement, i.e.,
I0maxðE;ΠÞ ≥ IðE∶ΠÞ. Equality holds if and only if the
postmeasurement states are independent of the input state,
i.e., when IaccðEðkÞÞ ¼ 0 for all k.
Information-theoretic characterization.—The efficiency

of a measurement Π in attaining information can be
quantified by the fraction of information extracted,
defined as
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Ē≡ IðE∶ΠÞ
IaccðEÞ

: ð6Þ

The amount of extracted information is normalized by the
total accessible information IaccðEÞ such that 0 ≤ Ē ≤ 1.
When information is not fully extracted by the measure-
ment, i.e., Ē < 1, part of the information can still be
preserved in the postmeasurement state and hence might
be accessible via suitable subsequent measurements. Thus,
we define the fraction of residual information that can
potentially be extracted via subsequent measurements as

R̄≡ I0maxðE;ΠÞ − IðE∶ΠÞ
IaccðEÞ

: ð7Þ

The residual information is bounded by 0 ≤ R̄ ≤ 1 − Ē.
The maximal mutual information I0maxðE;ΠÞ achievable

by any multistep protocol with a particular first measure-
ment Π performed by the receiver cannot exceed the
accessible information IaccðEÞ of the original signal states;
thus, I0maxðE;ΠÞ ≤ IaccðEÞ. The first measurement does not
destroy any information if and only if I0maxðE;ΠÞ ¼ IaccðEÞ.
Hence, we define the fraction of information destroyed as

D̄≡ IaccðEÞ − I0maxðE;ΠÞ
IaccðEÞ

; ð8Þ

which quantifies the reduction of accessible information
due to the measurement Π. Combing the three parts—the
fraction of extracted information Ē, residual information R̄,
and destroyed information D̄, respectively—we have con-
servation of total accessible information,

Ēþ R̄þ D̄ ¼ 1: ð9Þ

Here, we choose to use the accessible information, which
is computed in (3) via an optimization over all possible
measurements, as the conserved quantity and to normalize
other quantities by. When the accessible information is not
known, we can replace IaccðEÞ by the mutual information
for a suboptimal measurement eΠ for the task at hand (such
as the Helstrom measurement). Then the corresponding
quantities are defined in relation to eΠ.
Examples.—In the following, we illustrate the signifi-

cance of characterizing a quantum measurement by Ē, R̄,
and D̄ in the scenario of binary coherent-state discrimina-
tion, an important example for classical-quantum optical
communication. For the discrimination of binary coherent
states fjαi; j−αig with prior probabilities fη1; η2g, the
well-known Helstrom measurement is not only the meas-
urement that minimizes the average error probability but
also the measurement that maximizes the mutual informa-
tion [14]. Therefore, for such a given set of signals, the
amount of accessible information IaccðEÞ is known, and it is
less than unity owing to the intrinsic nonorthogonality

among coherent states. Although the mathematical con-
struction of the Helstrom measurement has been known for
decades, it has not yet been experimentally realized due to
limitations in both the experimental apparatus and receiver
strategies [25].
For discrimination schemes that use a two-element

POVM fΠ1;Π2g, including the Helstrom measurement,
the measurement outcomes of Π1 and Π2 are associated
with the signal states jαi and j−αi, respectively. The
success probabilities for identifying the states are fp1 ¼
hαjΠ1jαi; p2 ¼ h−αjΠ2j−αig, and the error probabilities
are fr1 ¼ hαjΠ2jαi; r2 ¼ h−αjΠ1j−αig. The measurement
outcome for Π1 occurs with probability PΠ1

¼ η1p1þ
η2r2 ¼ η1ð1 − r1Þ þ η2r2, and for Π2 with probability
PΠ2

¼ 1 − PΠ1
. The mutual information extracted by this

measurement is

IðE∶ΠÞ ¼ Hðη1Þ − PΠ1
H

�
η2r2
PΠ1

�
− PΠ2

H

�
η1r1
PΠ2

�
; ð10Þ

whereHðpÞ ¼ −p log2ðpÞ − ð1 − pÞ log2ð1 − pÞ gives the
Shannon entropy for a binary random variable with dis-
tribution fp; 1 − pg. Thus, evaluating (10) at the minimum
error probabilities r1 and r2 given by the Helstrom meas-
urement yields the accessible information

IaccðEÞ ¼ IðE∶ΠÞ
����
r1;2¼1

2

�
1− 1−2η2;1 jhαj−αij2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−4η1η2 jhαj−αij2
p

�: ð11Þ

The maximal mutual information I0maxðE;ΠÞ for the sub-
sequentmeasurement can then be evaluated fromaHelstrom
measurement on the postmeasurement states.
The minimum error probability attainable by all

Gaussian field detectors is achieved by the perfect homo-
dyne receiver [26]. In the hard-decision scheme, a binary
decision is made upon the sign of the measured quadrature.
The corresponding POVM elements are Π1 ¼

R
∞
0 dxjxihxj

and Π2 ¼
R
0−∞ dxjxihxj, where jxi denotes the state with

quadrature value x. The probability that a coherent state jαi
has a measured quadrature x using a balanced homodyne
detector is jhαjxij2 ¼ ffiffiffiffiffiffiffiffi

2=π
p

e−2ðx−jαjÞ2 . The probabilities of
error r1 ¼ r2 ¼ ½1 − erfð ffiffiffi

2
p jαjÞ�=2 are identical for the

two signal states, and (10) gives the mutual information for
this two-element POVM. The maximum mutual informa-
tion attainable using a homodyne receiver is, however, only
achieved by the soft-decision scheme regarding each
measured quadrature value as a measurement outcome of
the projector Πx ¼ jxihxj in the continuous space of
quadratures. The hard- and soft-decision schemes yield
the same average error probability, but the amount of
extracted information with the soft-decision scheme is
significantly larger; see Fig. 1(a). Since there is no access
to the postmeasurement state for such a homodyne receiver,
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the information that fails to be extracted is completely
destroyed, i.e., D̄ ¼ 1 − Ē.
Another class of popular schemes uses photon-number-

resolving-detection (PNRD) receivers that discriminate
coherent states by their photon statistics, which is a non-
Gaussian property of the field [28–31]. A displacement
operator DðβÞ displaces the signal states fjαi; j−αig to
fjαþ βi; jβ − αig before the signal is sent to the photon-
number-resolving detectors. In the hard-decision scheme, a
binary decision is made upon whether photons are detected
or not. In the Fock basis, the POVM elements correspond-
ing to the two signal states are Π1 ¼

P∞
j¼1 jjihjj and

Π2 ¼ j0ih0j. The probabilities for wrongly identifying
the states jαþ βi and jβ − αi are r1 ¼ jh0jαþ βij2 ¼
e−jαþβj2=2 and r2 ¼ 1 − jh0jβ − αij2 ¼ 1 − e−jβ−αj2=2,
respectively. The soft-decision scheme for the PNRD
receiver fully takes into account each specific measurement
outcome of the POVM given by projections onto all
elements of the Fock basis: fΠj ¼ jjihjj∶j ¼ 0; 1; 2;…g.

The difference in the fraction of information extracted Ē
between the hard- and soft-decision scheme is large for a
very weak light field, and becomes smaller as the field
amplitude jαj increases; see Fig. 1(b). Similar to the
homodyne receiver, the residual light field is completely
destroyed by the detector, and hence D̄ ¼ 1 − Ē.
The Neumark dilation theorem [12] enables the imple-

mentation of any two-element POVM by entangling the
signal to a qubit ancilla and measuring the ancilla system.
This process is described by

Ujαijii ¼ ffiffiffiffiffi
p1

p jφ1ij1i þ
ffiffiffiffiffi
r1

p jϕ1ij2i;
Uj−αijii ¼ ffiffiffiffiffi

r2
p jφ2ij1i þ

ffiffiffiffiffi
p2

p jϕ2ij2i; ð12Þ

where U is the unitary entangling operation and jii denotes
the initial state of the ancilla qubit in the Hilbert space
spanned by the orthogonal basis fj1i; j2ig. The ancilla
state is measured using projections Π1 ¼ j1ih1j and
Π2 ¼ j2ih2j. The Helstrom measurement can be effectively
implemented by optimizing the unitary operator U [32]. In
practice, however, the set of implementable POVMs is
limited by the choice of the physical ancilla and the
available unitary operations or couplings between the field
and the ancilla. Since the measurement is only on the
ancilla, thus, nondestructive on the light state, additional
information could be extracted by discriminating the
postmeasurement states fjφ1i; jφ2ig when the measure-
ment outcome is Π1, or discriminating the postmeasure-
ment states fjϕ1i; jϕ2ig when the outcome is Π2.
Reference [27] investigated the implementation of such

nondestructive measurements with the Jaynes-Cummings
interaction between the light signal and a two-level atomic
ancilla. Effectively, the atom serves as a receiver where
the information carried by the coherent state is transferred
to and then measured. The optimal minimum-error
discrimination strategy corresponds to initially preparing
the atom in its ground state jgi and, after its interaction
with the light field, projecting it onto the equal super-
position states of the ground and excited states fj1i ¼
ðjgi − ijeiÞ= ffiffiffi

2
p

; j2i ¼ ðjgi þ ijeiÞ= ffiffiffi
2

p g. The minimum
error probability for this scheme can be extremely close
to the Helstrom bound for weak coherent signals; i.e., Ē is
very close to unity when jαj2 is small. Moreover, this
scheme also fully preserves in the postmeasurement states
any information that has not yet been extracted, i.e.,
I0maxðE;ΠÞ ¼ IaccðEÞ; see Fig. 1(c). Hence, from the per-
spective of information theory, this discrimination scheme
is completely nondestructive as D̄ ¼ 0 and R̄ ¼ 1 − Ē.
The implementation for schemes of the Kennedy type

[33], which unambiguously discriminate one of the signals,
was also investigated in Ref. [27] using an atomic receiver.
In order to unambiguously discriminate the state jαi, the
signal set is displaced by DðαÞ to fj2αi; j0ig. If the atom,
initially prepared in its ground state jgi, is detected in the
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FIG. 1. The fraction of information extracted Ē (red), the
fraction of information destroyed D̄ (black), and the fraction
of residual information R̄ (blue) are plotted against the mean
photon number jαj2 for the discrimination of binary coherent
states fjαi; j − αig with equal priors. The hard-decision scheme
for the homodyne receiver (a) and PNRD receiver (b) is illustrated
by the dashed curves, and the soft-decision scheme is illustrated
by the solid curves. In (b), the dotted curves are plotted for the
Kennedy receiver with displacement operation Dðβ ¼ αÞ. The
schemes of the nondestructive implementation using an atomic
receiver described in Ref. [27] are illustrated by (c) and (d). The
data for the optimal scheme where the average error probability is
minimized are plotted in (c), and (d) shows the von Neumann
measurement scheme that unambiguously discriminates the
signal state jαi with a single measurement (solid curves) and
two sequential measurements (dashed curves).
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excited state jei, the decision that the signal state is jαi can
be made with certainty and no sequential measurement is
needed. If the atom is detected in jgi, more information can
be extracted by subsequent measurements on the postmea-
surement state (for jαj2 > 0). However, in this scheme, part
of the information is destroyed due to the atomic meas-
urement, and the accessible information cannot be fully
recovered through any subsequent measurement, i.e.,
I0maxðE;ΠÞ < IaccðEÞ as long as Ē ≠ 0 and jαj2 > 0; see
Fig. 1(d). The sequential measurement scheme for this
unambiguous discrimination strategy has also been inves-
tigated, and a significant increment in the extracted
information through subsequent measurements has been
demonstrated as shown in Fig. 1(d).
Discussion.—For the problem of quantum state discrimi-

nation, and, in particular, quantum receivers, one aims at
gaining maximal classical information from the quantum
state. Our approach, based on mutual information, is not
only directly linked to the capacity of the resulting classical
communication channel, but allows moreover to quantify
how much additional information could be obtained by
subsequent measurements. It is the trade-off between the
fraction of measured, residual, and destroyed information
that well characterizes the performance of a quantum
measurement for state discrimination. The method can,
for example, be used to analyze sequential measurement
schemes for any number of signal states, or a multipartite
scenario with local measurements and classical communi-
cation of the measurement outcomes.
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