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We introduce an exact mapping between the Dirac equation in (1þ 1)-dimensional curved spacetime
(DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1þ 1)-dimensional black hole
requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum
simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of
the free fall of a Dirac particle into a (1þ 1)-dimensional black hole, and find that the Zitterbewegung
effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity.
From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS,
we show that gravity generates squeezing of the Dirac particle wave function.
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Introduction.—The simulation of gravitational theories
and related phenomena in the laboratory constitutes an
ongoing effort that spans decades of research. Following
Unruh’s seminal work [1] to study Hawking radiation using
a sonic analog of a black hole, a variety of systems for the
analog simulation of gravity have been put forward.
Prominent examples include classical fluids [2–4], shallow
water waves [5–7], Bose-Einstein condensates [8–19],
ultracold atoms in optical lattices [20], superfluid helium
[21–23], nonlinear electrodynamics [24–28], slow light
[29–32], waveguides [33,34], ion rings [35], and laser
filaments [36,37]; see Refs. [38,39] for an extensive review.
In the same manner, embedding quantum simulators have
recently been identified as suitable candidates for the
quantum simulation of Rindler transformations, allowing
for the observation of black hole physics and related
relativistic phenomena in the lab [40].
In parallel, the field of quantum optics provides a

plethora of controllable quantum systems as potential
quantum simulators. This has led to a number of analogies
between models of quantum optics and other fields of
physics. A paradigmatic example is the connection between
the quantum Rabi model (QRM), which describes light-
matter interaction, and relativistic quantum physics. The
simulation of a Dirac fermion in Minkowski spacetime
has been proposed and implemented in several platforms
[41–45]. However, the connection between quantum
optics and quantum theory in curved spacetime remains

unexplored. In this Letter, we complete this missing link by
establishing an analogy between a multiphoton QRM and a
Dirac particle in a (1þ 1)-dimensional curved spacetime
(DCS), which highlights the connection between the two
fields. After introducing an exact mapping from a Dirac
particle in the background of a (1þ 1)-dimensional black
hole [46] to the multiphoton QRM, we propose its
implementation in a trapped-ion platform. Using numeri-
cally exact calculations, we explore the dynamics of a
massive Dirac particle in the vicinity of a black hole
through the analogy between the multiphoton QRM and
DCS. Our results show evidence of the Zitterbewegung
effect in the trajectory of the particle and its density profile.
Finally, we demonstrate that gravitation squeezes quantum
states as time evolves, in agreement with some recent
results [47–50].
The quantum Rabi model and the Dirac equation.—The

QRM describes the interaction of a two-level atom with a
quantized mode of the electromagnetic field. When the
wavelength of the electromagnetic mode greatly exceeds
the size of the atom, the dipolar approximation that neglects
the spatial dependence of the electromagnetic field justifies
a linear atom-field interaction. Interactions that are quad-
ratic in the field emerge in the description of effective two-
level systems due to second-order processes mediated by a
virtual third level that is negligibly populated. When the
atom-field coupling includes both linear and quadratic
terms in the field operators, the Hamiltonian reads ðℏ ¼ 1Þ
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HR ¼ ωâ†âþ ω0

2
σz þ gσxðâþ â†Þ þ κσxðâ2 þ â†2Þ; ð1Þ

whereω is the mode frequency,ω0 the energy splitting of the
two level system, and g and κ are the coupling strengths of
the linear and quadratic terms, respectively. The linear QRM
has been proposed and implemented in all its parameter
regimes using trapped ions [43,51] and in the ultrastrong and
deep-strong coupling regimes using superconducting circuits
[52–54], with protocols that can be as well extended to
nonlinear cases [55]. For κ ¼ 0 and ω ¼ 0, the correspond-
ing Schrödinger equation is equivalent to the (1þ 1)-
dimensional Dirac equation in flat Minkowski spacetime,
i∂tψ ¼ ðmc2σz þ pσxÞψ , upon identifying ω0=2 ¼ mc2

and g ¼ cp0. Here, p0 is the dimensional part of the
momentum operator p ¼ p0ða − a†Þ=i. This analogy has
been exploited in trapped ions for the quantum simulation of
relativistic fermions in flat spacetimes [42,56]. In this Letter,
we argue that the analogy holds when a static gravitational
field is included provided that the QRM contains a quadratic
two-photon term.
First, let us recall the general form of the DCS for a fixed

metric gμν in (1þ 1)-dimensional spacetime. Assume the
signature ðþ−Þ, where μ ¼ 0 corresponds to the time
component x0 ¼ ct and μ ¼ 1 is associated with the space
component x1 ¼ x. The DCS then reads [57]

�
iℏγaeμðaÞ∂μþ

iℏ
2
γa

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
eμðaÞÞ−mc

�
ψ ¼0; ð2Þ

where the matrices γa are given by the standard Pauli

matrices γ0 ¼ σz and γ1 ¼ iσy, and where eðaÞμ is a dyad

defined as eðaÞμ ¼ ∂Xa=∂xμ, with Xa (xμ) denoting the a
component (μ component) of the position vector in the
Minkowski spacetime (curved spacetime). Dyads satisfy

the orthonormality conditions eðaÞμ eνðaÞ ¼ δνμ. Now, we

consider a semiclassical gravity theory in (1þ 1) dimen-
sions for a static point source. Notice that in (1þ 1)
dimensions all metrics are conformally flat, and
Einstein’s equations demand that it be an empty space.
There are however interesting modifications of Einstein
gravity. In particular, we consider the theory in which the
curvature is proportional to the trace of the energy
momentum tensor [46,58,59]. The metric is given by gμν ¼
diag½αðxÞ;−1=αðxÞ� with g00 ¼ αðxÞ ¼ 2Mjxj þ ϵ, where
M is related to the mass of the point source (in units of
inverse length) M ¼ 4πGρ0a=c2 with ρ0 the density and a
the spatial distribution radius of the dust, resulting in a total
mass for the source of ρ0a, and where G is the (1þ 1)-
dimensional gravitational constant, which in the Systeme
International has units of kg−1m1 s−2. For the constant
value ϵ ¼ þ1, the solution corresponds to the metric
induced by a naked source. For ϵ ¼ −1, it corresponds
to the exterior black hole solution. In this Letter, we show

that the DCS in Eq. (2) for the black hole solution can
be exactly mapped onto a multiphoton QRM in Eq. (1).
Similarly, one can show that the naked source solution can
also be mapped to the multiphoton QRM in the weak field
approximation 2Mjxj ≪ 1, see Ref. [60].
Mapping for the black hole solution.—Taking ϵ ¼ −1,

we have αðxÞ ¼ ðjxj − rsÞ=rs, where the corresponding
Schwarzschild radius occurs at rs ¼ 1=ð2MÞ, which is
rs ¼ c2=ð4πGρ0aÞ in Systeme International units. Since
the particle cannot cross the black hole at x ¼ 0, it is
restricted to a region either to the right or to the left of the
origin. Here, we restrict the position of the particle to
x > rs, which can be done with no loss of generality due to
the symmetry of the metric about the origin. This also
means that the gravitational redshift factor

ffiffiffiffiffiffi
g00

p ¼ ffiffiffi
α

p
is

restricted to positive values. In order to rewrite Eq. (2),
we introduce operators X̂ and P̂ to carry out a mapping of
the form

X̂ ≡ rs
ffiffiffiffiffiffiffiffiffi
αðx̂Þ

p
; P̂≡ −iℏ

∂
∂X : ð3Þ

These operators are canonically conjugate and satisfy the
commutation relation ½X̂; P̂� ¼ iℏ. Under this mapping, the
DCS in Eq. (2) becomes [60]

iℏ
∂
∂tψ ¼

�
cσx

1

4rs
fX̂; P̂g þmc2σz

X̂
rs

�
ψ ; ð4Þ

where the operator fX̂; P̂g acts as the generator of squeez-
ing (see below). Alternatively, Eq. (4) can be derived
choosing the polar coordinates ðX; ctÞ, in terms of which
the spacetime interval reads ds2 ¼ ðX2=r2sÞc2dt2 − 4dX2,
see Ref. [60]. The new X̂ and P̂ operators can be mapped to
a bosonic field

X̂ ¼ λffiffiffi
2

p ðâþ â†Þ; P̂ ¼ ℏ

iλ
ffiffiffi
2

p ðâ − â†Þ; ð5Þ

where λ is a constant with units of length. Substituting
expressions (5) in Eq. (4) we arrive at iℏð∂=∂tÞψ ¼ HDψ
with the Hamiltonian

ĤD¼
�
cσx

1

4irs
ðâ2− â†2Þþmc2σz

λffiffiffi
2

p
rs
ðâþ â†Þ

�
; ð6Þ

which is formally equivalent to the multiphoton QRM
in Eq. (1) with ω ¼ ω0 ¼ 0. Thus, Eq. (6) encodes the
simulation of a Dirac particle in the background of a
(1þ 1)-dimensional black hole. We point out that the
inverse of the Schwarzschild radius 1=rs appears as a
multiplicative constant of Hamiltonian (6) and therefore
multiplies the time variable in the corresponding unitary
evolution operator. As a result, the simulation for a specific
value of rs is tantamount to the simulation for any value of
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rs up to a suitable rescaling of t. On the other hand, finding
an analogy between the QRM and the DCS in higher
dimensions seems a daunting task.
Trapped-ion implementation and numerical tests.—A

trapped ion offers suitable quantum degrees of freedom
for the simulation of Eq. (6), with its mechanical modes
behaving as quantum harmonic oscillators that can hold the
Hilbert space associated with operators a and a†, and two
of its electronic states implementing the Hilbert space
associated with Pauli operators.
To simplify the implementation, we change the σz

Pauli operator in the second term of Eq. (6) into a σy,
without altering the physics of the model. We propose to
implement the term ½mc2λ=ð ffiffiffi

2
p

rsÞ�σyðaþ a†Þψ with red
and blue sideband interactions, using Hamiltonians
−iηΩrðσþa−σ−a†Þ and iηΩbðσþa† − σ−aÞ, respectively.
The corresponding Rabi frequencies are

ηΩr ¼ mc2λ=ð
ffiffiffi
2

p
rsÞ; ηΩb ¼ −mc2λ=ð

ffiffiffi
2

p
rsÞ: ð7Þ

Similarly, the term ½ℏc=ð4irsÞ�σx½a2 − ða†Þ2�ψ can be
implemented with red and blue second sidebands,
−iη22Ωr;2½σþa2 − σ−ða†Þ2� and iη22Ωb;2½σþða†Þ2 − σ−a2�
with η22Ωr;2 ¼ η22Ωb;2 ¼ ℏc=ð4rsÞ. Note that the values
of Rabi frequencies ΩrðbÞ and Lamb-Dicke parameters η
for first and second sidebands can be set individually, given
that these will be excited with independent laser fields, and
therefore the ratio between first and second sideband
interaction strengths can be set at will.
The position of the simulated Dirac particle at time t

can be associated with observables of the mechanical
degrees of freedom of the ion through the equivalence
ð1=rsÞX̂ðtÞ2 ≡ x̂ðtÞ − rs, where x̂ðtÞ and X̂ðtÞ2 are given in
the Heisenberg representation. Similarly, the position of the
ion moving in the trap can be associated with the redshift
factor multiplied by rs and with the position of the Dirac
particle using the polar coordinates ðt; XÞ as mentioned
above. From an experimental point of view, the position
of a trapped ion as well as higher order moments can
be measured by mapping the information of the motional
state of the ion to its internal degrees of freedom. Such
measurements suffice to reconstruct the density profile of
the ion as done in Refs. [42,56,63].
We consider the initial state jΨ0i ¼ jϕ0i ⊗ jχi, where

jϕ0i and jχi are, respectively, the wave functions of the
spatial and internal degrees of freedom of the ion, which are
unentangled at time t ¼ 0. We numerically simulate the
unitary evolution of such a state under Hamiltonian (6) and
track the expectation value hX2iðtÞ, related to the mechani-
cal degrees of freedom of the ion. From it, we compute the
expectation value of the position operator of the simulated
Dirac particle, x. Note that for the semiclassical approxi-
mation to hold, the Compton wavelength of the Dirac
particle λc ¼ h=ðmcÞ must be much smaller than the

Schwarzschild radius, λc ≪ rs. In Fig. 1 we show numeri-
cal results for the case of a massive particle; specifically, we
analyze the regime in which m ¼ 0.3=λ and M ¼ 0.01=λ,
with c ¼ 1. The ion is initialized with its internal state
in jþix, where j�ix are eigenstates of σ̂x. A Gaussian
distribution ϕX0

ðXÞ≡ hXjϕ0i ¼ N e−½ðX−X0Þ2=2σ2� describes
the initial state of the mechanical degrees of freedom
localized in half-space X > 0, with values X0=λ ¼ 8 and
σ=λ ¼ 1 corresponding to a vacuum state displaced by
α=λ ¼ 8, and where N denotes the normalization factor.
The trapped ion can be prepared in such an initial motional
state by simultaneously applying resonant red and blue
sidebands on it, when it is in its lower energy state [64],
or via Bang-Bang techniques [65]. After changing the
space variable XðxÞ≡ rs

ffiffiffiffiffiffiffiffiffi
αðxÞp ¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx=rsÞ − 1
p

, we
find that the corresponding initial wave function localized
in the region x > rs for the simulated Dirac particle is
given by ϕx0ðxÞ≡ hxjϕ0i ¼ ½∂XðxÞ=∂x�1=2ϕX0

(XðxÞ),
where x0 ≡ ðX2

0=rsÞ þ rs.
Zitterbewegung effect in the presence of gravity.—As

shown in Fig. 1(a), the simulated Dirac particle approaches
asymptotically the horizon of the black hole at x ¼ rs. As
the validity of our mapping is preserved throughout the
entire time evolution, the ion does not cross the origin
X ¼ 0, see Fig. 1(b). In addition, the ion trajectory exhibits

(b)(a)

FIG. 1. Dynamics of a massive Dirac particle near a black hole
and the multiphoton QRM. Properties of the simulated Dirac
particle (a) are related to those of the ion (b), under the mapping
(3). In both cases the upper plot shows the initial (green) and final
(blue) probability density profiles, while the lower plots show
the expectation values of the corresponding position operators.
For the simulated Dirac particle, the position of the horizon is
indicated by a vertical line labeled rs. The initial state of the ion is
Ψ0 ¼ ϕX0=λ¼8ðXÞ ⊗ jþix, where ϕX0=λ¼8ðXÞ is a Gaussian wave
function centered at X0, and jþix is the eigenstate of operator σx
with positive eigenvalue. The simulation is performed under
the Hamiltonian in Eq. (6), for the case where mλ ¼ 0.3 and
Mλ ¼ 0.01, with c ¼ 1. The scale of the oscillations of the
simulated particle is smaller than that of the oscillations of the
ion, as the position of the simulated particle is rescaled by 1=rs
under mapping in Eq. (3).
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an oscillatory behavior, with an amplitude that vanishes
when the particle approaches the horizon. We associate this
phenomenon with the Zitterbewegung effect, well known
for massive relativistic fermions in flat spacetime, and
originating from the interference between positive and
negative energy solutions of the Dirac equation. We show
that such a phenomenon persists in the presence of gravity.
Intuitively, one can argue that this is indeed the case as a
curved spacetime can be described locally by a Minkowski
metric, in which we know that the particle manifests the
Zitterbewegung effect. The equation of motion for the
expectation value of the position operator x̂ðtÞ reads [60]

d2

dt2
hx̂ðtÞi ¼ c2

rs

�hx̂ðtÞi
rs

− 1

�

−
2mc3

ℏ

��
x̂ðtÞ
rs

− 1

�
3=2

e2iĤDt=ℏσ̂y

�
; ð8Þ

where the second term, which depends on the mass,
induces the oscillations in Fig. 1(a). In Ref. [60] we
show that the amplitude of the oscillations decreases as
the particle approaches the horizon hx̂ðtÞi → rs, see also
Fig. 1(a). Our mapping offers an alternative way to observe
the Zitterbewegung effect based on the recorded values of
the redshift factor hX̂ðtÞi=rs, see Fig. 1(b). Indeed, oscil-
lations between red and blue shifts provide a direct
signature of the Zitterbewegung effect. Note however that
for a massless particle m ¼ 0 this term vanishes, sup-
pressing the Zitterbewegung effect, as expected [41,60].
In the massless case, an ion initialized with internal state
j þ ð−Þix, i.e., in the positive (negative) chirality, moves
away from the origin (towards the horizon).
Figure 1 further shows an interference pattern in the

density profile that appears all along the dynamics. We
identify this phenomenon as an additional signature of the
Zitterbewegung effect. Indeed, this can be understood as an
interference between positive and negative energy solutions
of the Dirac equation that persists at long time. In flat
spacetime positive and negative energy solutions spread in
opposite directions and therefore do not overlap at long
times. However, in the presence of gravity the two solutions
approach the horizon (without crossing it). This results in
the spatial squeezing of the density profile of the particle
shown in Fig. 1. The overlap between both positive and
negative energy solutions is therefore maximized as the
particle approaches the horizon and the oscillations in
the trajectory are suppressed. We note that for the massless
case the interference pattern in the density profile is absent
(see Ref. [60]), consistently with the suppression of the
Zitterbewegung effect.
Squeezed states and gravity.—To understand the spatial

squeezing of the density profile (see Fig. 1), we stress that
the mapping we introduce, see Eqs. (4)–(6), suggests an
analogy between squeezing in quantum optics and curva-
ture of spacetime in the context of the relativistic Dirac

equation. From this analogy, we expect that gravity gen-
erates squeezed states as time evolves. A standard way to
characterize squeezing along the dynamics is to look at the
time evolution of the variance of the position and the
momentum, ΔXðtÞ and ΔPðtÞ [defined for an arbitrary

operator O as ΔOðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÔðtÞ2i − hÔðtÞi2

q
]. In Fig. 2 we

show that the variance of the momentum of the ion ΔP̂ðtÞ
grows indefinitely when the particle approaches the horizon
of the black hole while the variance of the position ΔX̂ðtÞ
decreases and tends asymptotically to zero. This gives a
signature of the squeezing of the wave function when the
particle approaches the horizon. A similar squeezing is
observed as well in the massless case, as we show in
Ref. [60]. Note that the relation between squeezing and
gravity has been recently explored in the context of
cosmological particle creation [47], in analogues using
Bose-Einstein condensates [11,48,66] and trapped ions
[49], and in relation to the Hawking effect near a
Schwarzschild black hole [47,50]. However, our results
exploit the first-quantization formalism, and therefore the
predicted squeezing relates exclusively to the phase space
of the simulated particle and cannot be, a priori, associated
with cosmological particle creation.
Conclusions.—We have proposed an analogy between

the DCS and a multiphoton QRM. We have shown that
the former can be exactly mapped to the latter when the
metric describes a (1þ 1)-dimensional analogue of a
Schwarzschild black hole. We have proposed the imple-
mentation of the mapping with a single trapped ion and
used numerical results to illustrate the dynamics of the ion
and a simulated Dirac particle. Our results show that the
Zitterbewegung effect in curved spacetime leads to the
oscillatory trajectory of the ion and the interference pattern
in its probability density profile. In addition, our findings
demonstrate that gravitation and quantum squeezing are

FIG. 2. Squeezing of the dynamics by curvature of spacetime.
The continuous line corresponds to the variance of the position of
the ion ðΔX=λÞ2 while the dashed line corresponds to the variance
of the momentum of the ion ðλΔPÞ2, both being dimensionless. A
logarithmic scale is used. The simulation regime is the same as
that in Fig. 1. As the ion evolves in time a clear trend towards its
position getting localized accompanied with an exponential
growth of the uncertainty of its momentum can be observed.
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strongly related and we hope that our present work will
motivate further research in this direction. The analogy
presented here illustrates a connection between relativistic
quantum mechanics in curved spacetimes and basic light-
matter interaction models, which may inspire quantum
simulations of relativistic equations in curved spacetimes in
a variety of quantum platforms.
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