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We report on the observation of the scissors mode of a single dipolar quantum droplet. The existence of
this mode is due to the breaking of the rotational symmetry by the dipole-dipole interaction, which is fixed
along an external homogeneous magnetic field. By modulating the orientation of this magnetic field, we
introduce a new spectroscopic technique for studying dipolar quantum droplets. This provides a precise
probe for interactions in the system, allowing us to extract a background scattering length for 164Dy of
69ð4Þa0. Our results establish an analogy between quantum droplets and atomic nuclei, where the existence
of the scissors mode is also only due to internal interactions. They further open the possibility to explore
physics beyond the available theoretical models for strongly dipolar quantum gases.
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The recent observation of quantum droplets in dipolar
Bose-Einstein condensates (dBEC) [1–3] and in BEC
mixtures [4–6] opens the opportunity to bridge the gap
between dense quantum liquids, such as atomic nuclei and
helium, and very dilute ultracold atomic samples. This link
was reinforced by the observation of the self-bound character
of quantum droplets [5–7]. Prior to this, several phenomena
shared by dense quantum liquids and dilute superfluids were
observed. In particular, the so-called scissors mode first
observed in nuclei [8–10] was later predicted and observed
in Bose-Einstein condensates in anisotropic external poten-
tials [11,12]. In nuclei, this mode corresponds to the out-of-
phase rotation of the neutrons and protons, and in BECs
it is an angular oscillation around the anisotropy axis [13].
Its existence is a marker of the breaking of a rotational
symmetry. A stark difference, however, between BECs and
nuclei is that in the latter, the scissors mode arises only due to
internal interactions. In contact-interacting BECs, this mode
exists only in an anisotropic external potential; it vanishes in
cylindrically symmetric traps.
Quantum droplets are liquidlike objects, bound by a

mean-field attraction and stabilized by beyond mean-field
effects [2,4]. Their collective modes are a revealing probe
for their internal properties [3,14,15]. The scissors mode
was theoretically explored in the context of dBEC in
Ref. [16]. Here, we demonstrate that the anisotropy of
the dipole-dipole interaction (DDI), set by the external
homogeneous magnetic field, leads to a well-defined
scissors mode in dipolar quantum droplets even in cylin-
drically symmetric trapping geometries. We parametrically
excite this mode, and the high frequencies observed reveal
the very strong intrinsic anisotropy of dipolar quantum
droplets. In addition, it is known that this mode is well

defined only for low excitation amplitude, while it is
nonlinearly coupled to other low-frequency modes for
large excitation angles [13]. We observe clear signatures
of this nonlinear mode coupling and use such coupling to
excite a low-frequency mode. Altogether, these measure-
ments represent a strong test of internal interactions in the
droplets; we thus extract the value of the s-wave back-
ground scattering length of 164Dy with good precision. We
put this in perspective with previous measurements, high-
lighting the two- and many-body physics at play in dipolar
quantum droplets of dysprosium.
Theory.—The scissors mode, corresponding to an angu-

lar oscillation, is naturally excited by the z component of
the angular momentum operator L̂z ¼

P
N
k¼1ðxkpy

k − ykpx
kÞ.

In the experiment, this corresponds to a rotation of the
external magnetic field axis around ẑ. We consider here
dipoles oriented along the y direction [see Fig. 1(a)],
thereby breaking rotational invariance in the xy plane,
even in the presence of a cylindrically symmetric trap.
Employing linear response theory, one can derive a
rigorous upper bound to the frequency of the scissors
mode in the form [13]

ℏωsc ¼
ffiffiffiffiffiffiffiffi
m1

m−1

r
; ð1Þ

where m1 ¼ ℏ2
R
dωωSLz

ðωÞ is the energy-weighted
moment of the dynamical structure factor SLz

ðωÞ, relative
to the angular momentum operator, while m−1 ¼R
dω=ωSLz

ðωÞ is the inverse energy-weighted moment.
Both moments m1 and m−1 encapsulate important physical
information on the scissors mode. The m1 moment can, in
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fact, be expressed in terms of a double commutator
involving the Hamiltonian of the system as

m1ðL̂zÞ ¼
1

2
h½L̂z; ½Ĥ; L̂z��i ð2Þ

and can be regarded as an effective restoring force
parameter for the scissors oscillation. Here h:i is the
average taken on the equilibrium configuration of the
system. The nonvanishing of the commutator ½Ĥ; L̂z� is
the consequence of the breaking of rotational invariance.
This can be due to the presence of an anisotropic trapping
potential, and/or to the presence of the dipolar interaction.
In the case we are interested in, of isotropic harmonic
trapping (ωx ¼ ωy ≡ ω⊥) (or in the absence of trapping),
only the dipolar interaction contributes to the commutator,
and the m1 sum rule takes the useful form (see
Supplemental Material [17])

m1 ¼
ℏ2

2
ðhVx

ddi − hVy
ddiÞ; ð3Þ

where hVα
ddi ¼

R
drdr0nðrÞVα

ddðr − r0Þnðr0Þ, and Vα
ddðrÞ ¼

ðμ0μ2=4πr3Þ½1 − 3ðα2=r2Þ�, α ¼ x, y, z. Equation (3)
emphasizes the crucial role played by the dipolar inter-
action, which causes an asymmetry between the ground-
state expectation values hVx

ddi and hVy
ddi. For 164Dy

μ ≈ 10μB, with μB the Bohr magneton, this defines the
dipolar length add ¼ ðμ0μ2m=12πℏ2Þ, compared to the s-
wave scattering length a via εdd ¼ add=a.
Differently from m1, the inverse energy-weighted

moment m−1 cannot be written in terms of commutators,

but it can be usefully identified in terms of the moment of
inertia Θ of the system. Actually, the moment m−1
corresponds, apart from a factor 1=2, to the static response
of the system to an angular momentum perturbation of the
form −ωL̂z. The moment of inertia, which provides the
mass parameter of the scissors oscillation, is very sensitive
to superfluidity, and for a Bose-Einstein condensate at zero
temperature, is given by the expression [13]

Θ ¼ 2m−1 ¼ m
ðhy2i − hx2iÞ2
hy2i þ hx2i ; ð4Þ

which follows from the irrotationality constraint character-
izing the superfluid velocity. For an axisymmetric con-
figuration, the moment of inertia of a superfluid then
identically vanishes.
All the average quantities characterizing the moments

m1 and m−1 can be evaluated using the Gaussian ansatz

ψðrÞ ¼ ð ffiffiffiffi
N

p
=π3=4σ̄3=2Þe

P
α
−ðα2=2σ2αÞ for the order param-

eter relative to the ground state, with α ∈ fx; y; zg and
σ̄3 ¼ σxσyσz. The square radii, entering the expression for
the moment of inertia, are given by hr2i i ¼ σ2i =2. The values
hVx

ddi and hVy
ddi, entering the m1 sum rule, can also be

calculated using the Gaussian ansatz, and in the general
case of anisotropic trapping we recover the results for
dipolar BECs obtained in Ref. [16]. The expression for the
resulting scissors mode frequency ℏωsc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m−1

p
is

reported as Eq. (S13) in Ref. [17]. It is worth noticing
that the calculated equilibrium sizes σi, obtained through a
variational procedure applied to the energy of the system,
strongly depend on the scattering length a [14,20], which

FIG. 1. (a) Experimental method: The quantum droplet is held in a cylindrically symmetric trap (around z); the orientation of the field
is modulated around its mean value along y forΔt ¼ 20 ms at variable frequency. The amplitude θm follows θmðfÞ ¼ 12°=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=100 Hz

p
.

(b) Experimental response measured as a growth in the visible size of the droplet σx × σy as a function of atom number and modulation
frequency. (c) The theory shows the same value extracted from solutions of the equations of motion within the Gaussian ansatz using the
best-fit value of a ¼ 68a0. It takes into account the finite excitation time as well as departure from the linear response regime. The shot-
to-shot fluctuations in atom number are simulated, and finite resolution is also implemented in the theory calculation of σx × σy. Note
the different scales for theory and experiments; the ∼20% difference in droplet size could be due to imaging miscalibration. The dashed
line shows the theoretical scissors mode frequency in linear response theory; see Ref. [17].
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gives an implicit dependence of the scissors frequency
on a. We have checked that a time-dependent simulation,
based on extended Gross-Pitaevskii (eGPE) theory, agrees
in the linear limit with the sum rule value for the scissors
frequency calculated using the Gaussian ansatz. The basic
ingredients underlying the dynamics of the scissors mode
are indeed well captured by the sum rule approach.
Actually, our result takes into account both the breaking
of rotational symmetry caused by the dipolar interaction
[see Eq. (3)] and the superfluid expression (4) for the
moment of inertia, which, however, does not differ sig-
nificantly from the classical rigid value mðhx2i þ hy2iÞ due
to the large anisotropy of the dipolar droplet characterizing
the present experimental conditions. The sum rule approach
provides a reliable estimate of the scissors frequency in the
linear regime. Experiments, however, involve relatively
large amplitudes of the oscillation, and for a systematic
quantitative comparison it is useful to develop a time-
dependent extension of the variational approach. It is based
on the Lagrangian formalism, where the Gaussian ansatz
is generalized to include a phase playing the role of a
velocity potential, as already employed for dipolar BECs in
Ref. [21] and in Ref. [14] for quantum droplets, now with
an additional parameter accounting for the orientation θ of
the droplet in the xy plane. The new calculation, which
corresponds to solving the equations of motion for the four
degrees of freedom σx;y;z and θ, accounts for the excitation
of the scissors mode as well as that of additional low-
frequency modes of quadrupole and compression nature,
which play an important role in the nonlinear limit, as we
will discuss below.
Experiments.—We perform experiments on dipolar

quantum droplets in an optical dipole trap, in which we
obtain lifetimes of several hundreds of milliseconds. The
trapping configuration was presented in Ref. [22]. Here
the trap has fixed frequencies of fx ¼ fy ¼ 40ð1Þ Hz,
fz ¼ 950 Hz (ẑ being along gravity), and is thus isotropic
in the xy plane, as assumed by the theory presented
above. The magnetic field is always oriented in this plane,
initially along ŷ. In such geometry, quantum droplets can
exist for smaller atom numbers than in free space and for
very small atom numbers outside the range of our experi-
ments; similarly to Ref. [23], they transform into solitons
[24,25], which differ from quantum droplets by being
stable even without beyond-mean-field corrections; see
Ref. [17]. To extract their properties, we fit column-
integrated images with a Gaussian distribution n̄ ¼
ðN=πσxσyÞ exp ½−ðx2=σ2xÞ − ðy2=σ2yÞ�. We obtain a typical
size along ŷ of σy ∼ 1.5 μm, while the extent along x̂ is
smaller than our resolution [17]. We create single droplets
containing a few hundred atoms. Their density being
initially high, the atom number decays fast from N ≈
750 down to N ≈ 400 via three-body losses. The systematic
uncertainty on the number of condensed atoms within the
droplet is δN=N ¼ 0.25 [17]. The absolute value of the

magnetic field is fixed to be B0 ¼ 800 mG, far from any
Feshbach resonance [26], so that the scattering length takes
the low-field background value abg.
In the first set of experiments, we parametrically excite

the scissors mode by adding an oscillating magnetic field
along x̂, exemplified in Fig. 1(a). The x field follows
BxðtÞ ¼ Bx0 sinð2πftÞ, with a variable frequency f and a
maximum amplitude of Bx0 ≤ 200 mG. The angle of the
field with respect to the y axis θf is then θfðtÞ≃
BxðtÞ=B0 ¼ θm sinð2πftÞ. The modulation time is
Δt ¼ 20 ms, chosen so that atom numbers variations are
small, ΔN=N ≤ 10%, during this time. Since Δt is kept
fixed, to keep a constant pulse “energy” we decrease
the modulation amplitude with a 1=

ffiffiffi
f

p
scaling: θmðfÞ ¼

θ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f=100 Hz

p
. We first perform our experiments with

θ0 ¼ 12°.
When the field direction is modulated, we observe a clear

excitation of the scissors mode. We show in Ref. [17] that
this is not due to the very small modulation of the absolute
field (½ðδjBjÞ=B0� ≤ 4 × 10−2). The excitation is seen as an
increase in the observed size of the droplet: σx × σy. Since
the atom number varies with time, we can investigate the
variation of the response with atom number. We observe a
clear dependence, shown in Fig. 1(b). The maximum
response frequency clearly increases with atom number.
We note that several features are also visible in Fig. 1(b).
In particular, a splitting into two lines is observable at
low atom numbers. These characteristics signal that the
observed response contains more than a simple parametric
excitation of the scissors mode in the linear response regime.
The rather large anisotropy of dipolar quantum droplets even
in symmetric traps leads to a well-defined scissors mode.
However, as we impose values of the excitation angle close
to the deformation ðσ2y − σ2xÞ=ðσ2x þ σ2yÞ of the atomic cloud,
we expect to approach the regime where the scissors mode is
not well defined as it couples to other low-lying modes [11].
To confirm that the line splitting for the lowest atom

numbers is due to hybridization of the scissors mode,
we perform experiments at a fixed atom number
N ¼ 390(100), but for varying amplitude. This is repre-
sented in Fig. 2(b)—for low amplitude we obtain a much
lower response, requiring much more data averaging to
reach a sufficient signal-to-noise ratio. But we do observe
that only one peak appears at lower amplitude, confirming
that departure from the linear regime occurs for the
amplitudes used in Fig. 1(b). In order to capture these
effects, which come from a coupling between the different
lowest-lying modes of the system, we compare the exper-
imental results with the predictions of the variational time-
dependent model introduced in the Theory section of this
Letter and discussed in details in Ref. [17]. With this
theoretical approach, we can implement the exact exper-
imental field modulation and reproduce very well the line
splitting as seen in Fig. 2(a). In addition, we can also obtain
a good agreement between theory and experiments for the
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range of atom numbers probed in Fig 1(b), with the
scattering length as a single adjustable parameter. The
result is shown in Fig. 1(c). In this plot, the scissors mode
frequency is shown as a dashed line, showing that the
departure from linear response causes a significant shift of
the signal. Finally, this allows us to conclude on the
scattering length for which our observations at different
atom numbers and θ0 ¼ 12° are best reproduced:
a ¼ 68ð5Þa0, where the main contribution to the error is
coming from the systematic uncertainty in the atom number
[17]. When on the other hand we use only the low-
amplitude data θ0 ¼ 5° at N ¼ 390 shown in Fig. 2, we
obtain a ¼ 67ð6Þa0, in agreement.
The nonlinear coupling between the scissors and other

low-lying modes provides us with a new tool to excite the
latter. In the last part of this Letter, we use this to study the
properties of the lowest mode. The mode coupling arises at
large angles between the field and the droplet. To probe this
regime, we perform a 90° rotation of the field at constant

B0 ¼ 800 mG in a time t ≃ 3 ms. Systematic imaging
errors prevent the direct observation of angle oscillations.
Nevertheless, we observe that the droplet quickly rotates
by 90°. Via this field orientation quench, we obtain clear
evidence for the excitation of a collective mode, seen as a
time oscillation of the droplet length. These oscillations are
strongly damped, and we are able to observe them up to
times of about 20 ms [17]. We infer that these oscillations
correspond to an excitation of the lowest-frequency col-
lective mode of the system, observed in Ref. [3]. It consists
essentially of a compression of the long axis of the droplet.
Performing simulations of the equations of motion, we find
that nonlinearities must be taken into account. We therefore
compare our experiments to numerical solutions of the
equations of motion as above, applying our exact exper-
imental field sequence.
We vary the z trapping frequency fz and record the

variation in the observed frequency of oscillation over
the first 10 to 20 ms. The experimental data are shown in
Fig. 3, where we observe very little shift. We compare our
measurements to theory and obtain relatively good agree-
ment, though the increase in frequency predicted by theory
is not clear in the experimental data. The best agreement is
obtained for a ¼ 70.5ð6.0Þa0. This value is compatible
with the scattering length extracted from the scissors mode
parametric excitation.
The scattering length values extracted here allow us to

conclude on the interactions present in Dy ultracold
samples at B ¼ 800 mG so that a ¼ abg. The error-
weighted mean experimental value from the two measure-
ments is abg ¼ 69ð4Þa0. Values obtained in noncondensed
samples [27–29] are consistently higher than that reported
in quantum droplets [7], though with large error bars. This
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whole range of atom numbers in Fig. 1; this explains the slight
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tion amplitude, the response increases, and a line splitting is
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might stem from the effect theoretically predicted in Ref. [30]
of an effective dipole-dipole interaction dependent on colli-
sional energy. Systematic measurements, for instance using
the lattice method of Ref. [3], could shed further light into the
two-body interactions, which can no longer be described by a
simple addition of the DDI potential and the effective contact
interaction potential [31,32]. An interesting direction to
further explore is to try to compare precise measurements
of collective mode frequencies on one side and critical atom
number in self-bound droplets on the other side. Indeed, these
precise spectroscopic probes should hold a signature of
departure from the eGPE description of the system, a break-
down of the local density approximation should be expected,
and the critical atom number might depend on details of the
potential beyond the s-wave scattering length, as was shown
for Bose mixtures in Ref. [33]. QuantumMonte Carlo works
like Refs. [34–36] will need to include two-body interaction
potentials faithful to the real Dy-Dy potential.
In conclusion, our work sheds new light on dipolar

quantum droplets, demonstrating a macroscopic collective
mode shared with atomic nuclei. In both systems, this mode
is due to internal interactions, though for the present case
of dipolar quantum droplets, the rotational symmetry is
broken by the external homogeneous magnetic field, while
it is spontaneously broken in nuclei. We showed that the
method developed here is a powerful probe for interactions
in dipolar quantum droplets, and its systematic application
should lead to the observation of physics beyond the
current theoretical level.
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