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Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with
ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we
establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point,
governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged
mode at the quantum critical point is highlighted.
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Heavy fermion materials are a class of quantum system
in which the close competition between magnetism and
itineracy drives a wealth of novel quantum ground states,
including hidden-order, strange, and quantum critical
metals, topological insulators, and unconventional super-
conductivity [1,2]. The various entanglement mechanisms
by which the localized magnetic moments correlate and
transform heavy fermion materials provide an invaluable
window on the governing principles needed to control and
manipulate quantum matter.
An aspect of particular interest is the quantum criti-

cality that develops when a second-order magnetic phase
transition is tuned to absolute zero. In itinerant magnets,
quantum phase transitions (QPTs) are understood in terms
of the classic Slater-Stoner instabilities of Fermi liquids
(FLs), described by the interaction of soft magnons with a
Fermi surface, described in its simplest form by the
Hertz-Millis-Moriya theory [3–5]. More recent treatments
have examined the role of nonlocal interactions, mediated
by the Fermi sea [6–8]; in itinerant ferromagnets, these
interactions give rise to first-order QPTs, a feature in
good accord with experiment. The nature of the quantum
criticality in metals in which the magnetism has a
localized moment character is less well understood, but
is thought to involve a partial or complete Mott locali-
zation of the electrons, manifested in heavy fermion
compounds as a breakdown of the Kondo effect and a
possible collapse in the Fermi surface volume [9–15].
Most research into heavy fermion quantum criticality has

focused on antiferromagnetic instabilities, often discussed
as a competition between the Kondo screening of local
moments and antiferromagnetism, driven by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[16–18]. However, there is now a growing family of heavy
fermion systems, including α- and β-YbAlB4 [19–21],
YbNi4P2 [22], YbNi3Al9 [23], and CeRu2Al2B [24].
Unlike itinerant ferromagnets, these systems display

second-order quantum criticality, suggesting an important
interplay of the Kondo effect with criticality [6,18,25].
These discoveries motivate us to examine quantum

criticality in a Kondo lattice with ferromagnetic (FM)
interactions. This affords many simplifications, for a uni-
form magnetization M commutes with the Hamiltonian
½M;H� ¼ 0 and is thus a conserved quantity, free from
zero-point motion. Antiferromagnetic Kondo lattices are
normally discussed in terms of a “global” phase diagram
[10,14] with two axes—the Doniach parameter
x ¼ TK=JH, set by the ratio of the Kondo temperature
TK to the Heisenberg coupling JH, and the frustration
parameter y measuring the strength of magnetic zero-point
fluctuations. The elimination of magnetic zero-point fluc-
tuations allows us to focus purely on the x axis of the
generalized phase diagram, and it becomes possible to
study magnetic quantum criticality in a one-dimensional
model.
Our model is motivated by the quasi-one-dimensional

Yb structure of YbAlB4, in which a chain of ferromagneti-
cally coupled Yb spins hybridizes with multiple conducting
planes of B atoms (Fig. 1) [26]. For simplicity, we treat
each plane as an autonomous electron bath with a flat
density of states, individually coupled via an antiferromag-
netic Kondo coupling JK , according to

H ¼
X
j

½HcðjÞ þ JKS⃗j · σ⃗j − JHS⃗j · S⃗jþ1�; ð1Þ

where S⃗j is the spin at the jth site, coupled ferromagneti-

cally to its neighbor with strength JH. HcðjÞ ¼P
pϵpc

†
pαðjÞcpαðjÞ describes the jth layer of electrons,

coupled to the chain via its spin density σ⃗j ¼ ψ†
jασ⃗αβψ jβ at

the chain, where p is the momentum of the conduction
electrons at the jth layer and ψ†

jα ¼
P

pc
†
pαðjÞ creates an

electron at the position of the magnetic moment j on
the chain.
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At small x ¼ TK=JH, the 1D chain is ferromagnetically
correlated, developing true long-range order and breaking
time-reversal symmetry at zero temperature, while at large
x, it forms a paramagnet, where each spin is individually
screened: in between, there is a sharp transition that we
identify as a quantum critical point (QCP) [16,25]. This
QCP has been demonstrated [27,28] in the Ising limit
of this Kondo lattice at the Toulouse decoupling point
[29], which permits bosonization of the Hamiltonian,
mapping it [30] onto the transverse field Ising model,
H → TK

P
nS

x
n þ JzH

P
nS

z
nS

z
nþ1. This model has a well-

known RG flow [Fig. 1(d)] and a quantum phase transition
at JzH ¼ TK [31]. However, in this limit, the stable phases
are gapped, and to gain a deeper insight into the physics of
the QCP, we return to the Heisenberg limit.
Here instead, we use a large-N Schwinger boson

approach that treats the magnetism in the Heisenberg limit,
while also explicitly preserving the Kondo effect. Our
method unifies the Arovas and Auerbach treatment of
ferromagnetism [32] with the description of the Kondo
problem by Parcollet et al. [33,34] and Coleman and co-
workers [35,36]. An important aspects of this approach is
the use of a multichannel Kondo lattice in which the spin S
and the number of channels K is commensurate (K ¼ 2S),
allowing for a perfectly screened Kondo effect [36].
Figure 1(c) summarizes the key results. At large TK=JH,

our method describes a FL phase with Pauli susceptibility
χ ∼ 1=TF and a linear specific heat coefficient
γ ¼ C=T ∼ 1=TF. As x is reduced to a critical value xc,
the characteristic scale TFðxÞ, determined from the mag-
netic susceptibility and linear specific heat coefficient
[Figs. 2(c) and 2(d)], drops continuously to zero, terminat-
ing at a QCP. This suppression of TF resembles the

Schrieffer mechanism for the reduction of the Kondo
temperature in Hund’s metals [37–40]. The large-N QCP
is characterized by power-law dependences of the specific
heat and local and uniform susceptibilities,

χðTÞ ∼ 1

T
; χlocðTÞ ∼

1

T1−α ;
C
T
∼

1

Tα ; ð2Þ

where the exponent α½s� < 1 is function of the spin
s ¼ 2S=N. At still smaller x, the chain develops a fragile
ferromagnetism that disappears at finite temperatures. Here
χ ∼ 1=T2 and C=T ∼ 1=

ffiffiffiffi
T

p
, characteristics of a critical 1D

ferromagnetism. There are two notable aspects of the
physics: first, the QCP exhibits an emergent critical charge
fluctuation mode associated with Kondo breakdown, and
second, the 1D ferromagnetic ground state is intrinsically
quantum critical, transforming into a Fermi liquid with
characteristic scale of order the Zeeman coupling, upon
application of a magnetic field. This last feature is strongly
reminiscent of the observed physics of β − YbAlB4, a point
we return to later.
Our large-N approach is obtained by casting the local

moments as Schwinger bosons SðjÞαβ ¼ b†jαbjβ, where
2S ¼ nbðjÞ is the number of bosons per site, each

FIG. 1. (a) The quasi-1D structure of Yb local moments (red) in
YbAlB4 sandwiched between conducting B layers. (b) 1D model,
showing ferromagnetically coupled local moments (−JH < 0),
each screened by a separate conduction electron sea (gray layers).
(c) Phase diagram we find for the model as a function of TK=JH
and temperature, showing a Fermi liquid and a 1D ferromagnetic
regime, separated by a QCP, giving rise to a fan of strange metal
(SM) behavior at high temperature. The Fermi temperature TF
vanishes at the QCP. The 1D FM only orders at zero temperature
and is intrinsically quantum critical. (d) RG flow of transverse
Ising model to which our model maps in the Ising limit.

FIG. 2. (a) The spectral density of spinons −G00
Bðωþ iηÞ for

k ¼ s ¼ 0.3 as a function of TK=JH , shows the spinon band at
positive energy and the Kondo-screened spins appearing as
confined spinons at negative energy. The Kondo gap at large x
shrinks linearly with lowering x, collapsing at about x ≈ 2.
(b) Zero temperature magnetization m=s (blue) and holon phase
shift δχ=π (red) as a function of TK=JH . (c) The spectral density
of holons −G00

χ ðωþ iηÞ as a function of TK=JH shows the critical
mode at the QCP (inset). (d) Specific heat coefficient γðTÞ ¼
C=T vs temperature as TK=JH is varied from 5 (blue) to 0.1 (red).
The inset in (d) shows the power-law dependence of γ at the QCP.
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individually coupled to a K channel conduction sea, with
Hamiltonian

H ¼
X
j

fHFMðjÞ þHKðjÞ þHCðjÞ þ λj½nbðjÞ − 2S�g;

ð3Þ
where (scaling down coupling constants)

HFMðjÞ ¼ −ðJH=NÞðb†jαbjþ1;αÞðb†jþ1;βbjβÞ;
HKðjÞ ¼ −ðJK=NÞðb†jαψ jaαÞðψ†

jaβbjβÞ;
HCðjÞ ¼

X
p

ϵpc
†
paαðjÞcpaαðjÞ; ð4Þ

where λj is a Lagrangemultiplier that imposes the constraint.
Herewe have adopted a summation convention,with implicit
summations over the (greek) α ∈ ½1; N� spin and (roman)
a ∈ ½1; K� channel indices. In the calculations, we take 2S ¼
K ¼ sN for perfect screening, where s is kept fixed.
Next, we carry out the Hubbard-Stratonovich transforma-

tions

HKðjÞ → ½ðb†jαψ jaαÞχja þ H:c:� þ Nχ̄jaχja
JK

;

HFMðjÞ → ½Δ̄jðb†jþ1;αbj;αÞ þ H:c:� þ NjΔjj2
JH

: ð5Þ

The first line is the Parcollet-Georges factorization of the
Kondo interaction, where the χja are charged, spinless
Grassman fields that mediate the Kondo effect in channel
a. The second line is the Arovas-Auerbach factorization of the
magnetic interaction in terms of the bond variables Δj

describing the spinon delocalization. Both b and χ fields have
nontrivial dynamics [33–36], with self-energies given by (see
Supplemental Material [41])

ΣχðτÞ ¼ g0ð−τÞGBðτÞ; ΣBðτÞ ¼ −kg0ðτÞGχðτÞ ð6Þ
Here GχðτÞ, GBðτÞ, and gðτÞ are the local propagators of the
holons, spinons, and conduction electrons, respectively. The
conduction electron self-energy is of order Oð1=NÞ and is
neglected in the large-N limit, so that g0ðτÞ is the bare local
conduction electron propagator. The holonGreen’s function is
purely local, given by GχðzÞ ¼ ½−J−1 − ΣχðzÞ�−1, but the
interesting new feature of our calculation is the delocalization
of the spinons along the chain. Seeking uniform solu-
tions where Δj ¼ −Δ and λj ¼ λ, the spinons develop a
dispersion ϵBðpÞ ¼ −2Δ cosp, with propagator GBðp; zÞ ¼
½z − ϵBðpÞ − λ − ΣBðzÞ�−1. The momentum-summed local
propagator is then

GBðzÞ ¼
X
p

GBðp; zÞ ¼
Z

dϵBρðϵBÞ
z − λ − ϵB − ΣBðzÞ

; ð7Þ

where ρðϵBÞ ¼ ð2πΔÞ−1½1 − ðϵB=2ΔÞ2�−1=2 is the bare spi-
non density of states. Using Cauchy’s theorem,

GBðzÞ ¼
1

Ω½z�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ½ΩðzÞ=2Δ�−2
p ; ð8Þ

where ΩðzÞ≡ z − λ − ΣBðzÞ [41].
Stationarity of the free energy with respect to λ and Δ

then leads to two saddle point equations

Z þ∞

−∞

dω
π

nBðωÞIm½GBðω − iηÞ� ¼ s; ð9Þ

1þ ζ Δ2

J2H

JH
¼

Z
dω
2πΔ2

nBðωÞIm½ΩðzÞGBðzÞ�z¼ωþiη; ð10Þ

which determine λ and JH self-consistently.
In (10), we have added an additional ζ Δ2

J2H
, which

stabilizes the quantum critical point. Schwinger boson
mean-field theories suffer from weak first-order phase
transitions upon development of finite Δ, due to fluc-
tuation-induced attractive quartic OðΔ4Þ terms in the
effective action. This difficulty [42] has thwarted the study
of quantum criticality with this method. These first-order
transitions are actually a nonuniversal artifact of the way
the large-N limit is taken, circumvented by adding a small
repulsive biquadratic term H0ðjÞ ¼ ζJHðS⃗j · S⃗jþ1Þ2 to the
Hamiltonian. For an SU(2) S ¼ 1=2 moment, the biquad-
ratic term can be absorbed into the Heisenberg interaction,
but for the higher spin representations of the large-N
expansion, it contributes a positive quartic correction
OðζΔ4Þ to the effective action that restores the second-
order phase transitions (at both zero and finite temperature)
to the large-N limit [41]. In practice, a ζ ∼ 0.001 is
sufficient to remove the first-order transition, so that Δ
tunes linearly with JH across the quantum critical point.
To find GBðωÞ and GχðωÞ, we solve Eqs. (6)–(9) self-

consistently on a linear and logarithmic grid. The entropy
formula from [35,36] was used to compute the specific heat
associated with these solutions [41].
In the Kondo limit (TK=JH ≫ 1), the local moments are

fully screened, forming a Fermi liquid; in the Schwinger
boson scheme, the formation of Kondo singlets is man-
ifested as a spectral gapΔg ∼ TK [36] in the spectrum of the
spinons and holons, where TK ¼ fðT0

K; sÞ and T0
K ¼

De−1=ρJ is the Kondo temperature [Fig. 2(a)]. The opening
of this gap effectively confines the spinon and conduction
electron into a singlet bound state, leaving behind an elastic
resonant scattering potential that satisfies the Friedel sum
rule with phase shift δ ¼ π=N.
In the opposite ferromagnetic limit TK=JH ≪ 1, the

chain forms a fragile ferromagnet. In this case, the spinons
are condensed in the ground state, but at finite temper-
atures, the spinon band is gapped: the constraint (9) ensures
that the gap in the spectrum grows quadratically,
ΔbðTÞ ∝ T2, and together with the quadratic dispersion,
this leads to a free energy F ∝ T3=2, a critical susceptibility
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χ ∝ T−2, and a specific heat coefficient C=T ∝ T−1=2

[32,41] in agreement with Bethe ansatz [43–46]. The
van Hove singularity of density of states means that the
ferromagnet is fragile, so that the bosons only condense,
developing true long-range order at absolute zero.
Figure 2 shows the evolution of properties between these

two limits. As x is reduced, the spectral gap responsible for
Fermi liquid behavior shrinks linearly to zero at the QCP at
xc ≈ 2, an indication of Kondo breakdown. This suppres-
sion of the Kondo temperature with x is closely analogous
to reduction of the Kondo temperature by Hund’s coupling
[37,40,47], with Δ ∼ JH playing the role of the Hund’s
coupling and the ratio ξ=a of the spin correlation length to
the lattice spacing playing the role of the effective moment.
The ground-state ferromagnetic moment is given by

m ¼ lim
T→0

Z
∞

0

dω
π

nBðωÞImGBðω − iηÞ; ð11Þ

which measures the residual positive-energy spinon pop-
ulation, which condenses at T ¼ 0 [Fig. 2(b)]; m is zero in
the fully screened state, and rises gradually to a maximum
value m ¼ s ¼ 2S=N in the ferromagnetic limit. Note that
m=s < 1 indicates that the magnetic moment is partially
screened by an incipient Kondo effect, which continues into
the fragile magnetic phase.
Although our simple model does not allow us to examine

the evolution of the Fermi surface, we can monitor the
delocalization of heavy electrons by examining the phase
shift of the holons δχ ¼ Im ln½−G−1

χ ð0 − iδÞ�. The change
in the number of delocalized heavy electrons Δnf is related
to the holon phase shift by the relation Δnf ¼ P

aðδχ=πÞ
[35,36], which is plotted as a function of x in Fig. 2(b).
Although we do not observe a jump in Δnf at the QCP,
there is a sharp cusp in its evolution at x ¼ xc. One of the
interesting aspects of our results is that the holon spectrum
becomes critical at the QCP [Fig. 2(c), inset], signaling the
emergence of a critical spinless charge fluctuation that
accompanies the critical formation and destruction of
singlets.
The specific heat coefficient γ ≡ C=T ¼ dS=dT, plotted

in Fig. 2(d) shows a “Schottky” peak at T ∼ TF for large x
(blue), which collapses to zero as x → xc (red). At the QCP,
γðTÞ ∼ T−α follows a power law, where α½s� depends on the
reduced spin s ¼ 2S=N. In the calculations displayed here,
α ¼ 0.6 for s ¼ 0.3 [Fig. 2(d)]. In the magnetic phase,
γ ∼ 1=

ffiffiffiffi
T

p
, again characteristic of 1D FM.

Figure 3(a) shows the dependence of the uniform spin
susceptibility on x. In the Fermi liquid at large x (blue),
there is a crossover from a Curie susceptibility χ ∼ 1=T at
high T to a Pauli susceptibility χ ∼ 1=TF at the Fermi
temperature TF. As x decreases, TF decreases to zero and
the susceptibility becomes critical. At the QCP, the sus-
ceptibility χ ∼ 1=T follows a simple Curie law. For x < xc,
the susceptibility displays a χ ∼ 1=T2 characteristic of 1D

FM. We use the dependence of the temperature exponent
κ ¼ −d log χ=d logT of the susceptibility on x and temper-
ature to map out the phase diagram [Fig. 3(b)]. The dark
blue stripe delineates the renormalized Fermi temperature
of the Fermi liquid, showing its collapse to zero as x → xþc .
The corresponding evolution in the dynamical magnetic
susceptibility χ00ðq;ωÞ of various phases is shown in
Fig. 3(b). The sharp magnon band in the magnetic phase
is smeared at the QCP, denoting fractionalization of the
spins. The FL phase features a spectral gap, which is an
artifact of the large-N method, as well as some remnants of
the magnon band.
We have also studied the effect of a magnetic field [41].

While the Fermi liquid is robust, application of a small
magnetic field to the QCP or the FM phase [48,49]
immediately reinstates Fermi-liquid behavior with n scale
TB set by the Zeeman energy (at the QCP) or a combination
of the spinon bandwidth and magnetic field (in the FM
phase) [41]. The ferromagnetic phase is thus intrinsically
quantum critical.
There are two interesting aspects of our Letter that merit

further examination. First, we note that the intrinsic
quantum criticality of the 1D FM phase in our model is
reminiscent of β − YbAlB4, raising the fascinating pos-
sibility that the critical FM in our one-dimensional model
might be stabilized in higher dimensions by frustration.
Second, we note that the Kondo breakdown at the QCP
appears to involve a critical spinless charge degree of
freedom. It is intriguing to speculate whether this might be
an essential element of a future theory of heavy fermion
quantum criticality.

FIG. 3. (a) Uniform spin susceptibility χ as a function of
temperature as TK=JH is varied from 0.1 (red) to 5 (blue). (b) The
phase diagram obtained from the temperature exponent κ of
susceptibility χ ∼ T−κ shows the Kondo breakdown induced by
the Schrieffer suppression of the Fermi temperature and separated
from the magnetic phase by a QCP. (c) Dynamical spin
susceptibility in FL (TK=JH ¼ 3.6), QCP (1.65), and FM
(0.36) regimes, respectively.

PHYSICAL REVIEW LETTERS 120, 157206 (2018)

157206-4



The future extension of our work to antiferromagnetism
will allow an exploration of the generalized phase diagram.
Moreover, generalizations of the approach to higher dimen-
sional systems are possible, using our approach as an
impurity or cluster solver within a dynamical mean-field
theory [50]. The effect of electron hopping between
conduction layers, the resulting RKKY interaction it gives
rise to, and possible nonuniform mean-field solutions are
other interesting avenues for exploration.
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