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We study the temperature dependence of the electrical resistivity in a system composed of critical spin
chains interacting with three-dimensional conduction electrons and driven to criticality via an external
magnetic field. The relevant experimental system is Yb2Pt2Pb, a metal where itinerant electrons coexist
with localized moments of Yb ions which can be described in terms of effective S ¼ 1=2 spins with a
dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively
weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice
with different effective space dimensionalities of the two interacting subsystems. We characterize the
corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation
rate and the dc resistivity and establish its quasilinear temperature dependence.
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The coexistence of conduction electrons and localized
magnetic moments leads to fascinating physics driven by a
competition between screening of the magnetic moments
by the conduction electrons and strong correlations from
interaction between the moments. This competition plays
itself differently depending on such factors as symmetry,
crystal structure, disorder, and space dimensionality [1–5].
Prototypical materials for the study of this interplay are rare
earth based metals containing a band of conduction
electrons and localized moments of strongly correlated f
electrons [6]. If the Kondo screening wins, the low energy
sector behaves like a Fermi liquid of heavy quasiparticles. It
is usually assumed that the opposite case characterized by a
strong interspin interaction leads to magnetic ordering and
decoupling of the two subsystems [7]. Such a scenario,
however, is likely to be substantially modified in the case
when the spin subsystem is quasi one dimensional and
hence cannot order by itself [8]. This is exactly the case we
are interested in.
In our considerations, we have been motivated by

experiments on Yb2Pt2Pb, a metallic compound, where
the itinerant electrons originate from Pt and Pb ions and the
local moments are formed by electrons localized on the
orbitals of 4f13Yb ions [9]. In the crystal field, these
moments are reduced to the lowest j ¼ �7=2 Kramers
doublets [10,11]. There are several features making
Yb2Pt2Pb very special. The local moments form a quasi
one-dimensional subsystem of effective spins S ¼ 1=2
weakly interacting with three-dimensional (3D) conduction
electrons. As was found in [12], the magnetic excitations
are strongly incoherent, gapped (see also [13]), and
essentially one dimensional in a zero magnetic field. The
Ising-like chain is already ordered at T ¼ 0, and the effect

of the small interchain coupling (of primarily dipolar
origin) is simply to extend this order to finite temperatures
2 K [13] without noticeably changing the magnitude of the
order parameter [12]. The exchange interaction with the
conduction electrons appears to be weak, with no exper-
imental indication of Kondo screening [14], particularly in
a zero magnetic field when the spectrum is gapped.
However, when the field overcomes the gap, the magnetic
excitations become critical and the 3D magnetic order is
strongly suppressed [13,15]. Then, their interaction with
the conduction electrons becomes important [16]. The
strongest critical fluctuations of one-dimensional magnetic
chains embedded in a 3D host are centered not at one wave
vector but on an entire plane in 3D reciprocal space. As a
consequence, scattering of electrons with critical fluctua-
tions is strong not just at certain spots but over a continuum
manifold, making a significant portion of the Fermi surface
“hot”. Hence, we expect a regime with non-Fermi-liquid
(NFL) behavior, which persists until the magnetic field
exceeds an upper critical threshold, where the magnetiza-
tion saturates and the excitation spectrum becomes gapped
again. Interestingly, the critical behavior is due to local
moments that are coupled to, but not hybridized, with
itinerant electrons. Furthermore, it appears in the unique
situation of a Kondo lattice where the two interacting
subsystems have different effective space dimensionality.
To characterize the emergent NFL behavior, we perturba-

tively calculate the leading frequency and temperature
dependence of the electronic relaxation rate and dc conduc-
tivity. They are strongly affected by the scatteringof electrons
on the critical modes of the Yb spin subsystem. As an
advantage of the one dimensionality, the exact form of the
low energy asymptotics of the spin-spin correlation functions
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is known so that we can account for the nontrivial dynamics
of the local moments in a clear, analytical way.We discover a
distinct NFL signature in both, conductivity and relaxation
rate, induced by the staggered part of the correlations among
localmoments. In contrast, the contribution from the uniform
component is subleading. In particular, we find that for an
extended magnetic field regime the resistivity scales linearly
with temperature. This anomalous temperature dependence
exists for all current directions, parallel or perpendicular, to
theYb chains.However,we find that the absolutevalue of the
resistivity parallel to the chains is markedly smaller than the
one perpendicular to them due to the one-dimensional
character of the spin excitations. This agrees with the
experimental measurements for Yb2Pt2Pb, which show an
anisotropic resistivity linear in T at intermediate magnetic
fields [13,15].
Model.—Theneutron-scattering experiments inYb2Pt2Pb

can be described by a model of weakly interacting, aniso-
tropic spin S ¼ 1=2 chains [12] in terms of exact expressions
of theXXZ spin-1=2 chain Hamiltonian with moderate Ising
anisotropy leading to a small excitation gap Δ. Here, we
study the situation when this gap closes due to an external
magnetic field and the spins enter a Luttinger liquid phase.
Because of the dipolar origin of the interchain coupling, its
effect in the absence of order becomes negligible [13,15].
The low-energy spin-spin correlation functions take a uni-
versal form and do not depend on the exact microscopic
model. The only remaining memory is contained in the
correlation function exponents as shown below.
Critical modes appear at different wave vectors Q,

corresponding to the uniform and staggered components
of the correlation functions [17–20]. For correlations
parallel to the spin z direction, hSzðω; qÞSzð0; 0Þi, they
are around Q ¼ 0 and Q ¼ πð1� 2MÞ, where M ≪ 1 is
the induced magnetization, and M ∝

ffiffiffiffiffiffiffiffiffiffiffiffi
h − Δ

p
, due to the

magnetic field h ¼ gμbH. Critical hSþðω; qÞS−ð0; 0Þi
modes appear close to Q ¼ �2πM and Q ¼ π. The
zero-temperature dynamical susceptibility corresponding
to the uniform and staggered correlation functions for the
Sz components takes the form

χuzzðiω; qkÞ ¼ χu;0zz;0

q2jj
ω2 þ v2sq2jj

; ð1Þ

χszzðiω; qkÞ ¼ χs;0zz
1

ðω2 þ v2sq2jjÞ1−K
; ð2Þ

where q measures the deviation from the critical wave
vector Q and the parameters label spin excitation velocity
vs and effective Luttinger liquid parameter K. The corre-
sponding SþS− correlations are given by

χuþ−ðiω; qkÞ ¼ χu;0þ−
−ω2 þ v2sq2

ðω2 þ v2sq2jjÞ2−K−1=ð4KÞ
; ð3Þ

χsþ−ðiω; qkÞ ¼ χs;0þ−
1

ðω2 þ v2sq2jjÞ1−1=ð4KÞ
; ð4Þ

where χþ−=2 ¼ χxx ¼ χyy due to spin rotation symmetry
around the external magnetic field. The Luttinger liquid
parameter K varies with magnetic field and depends on the
microscopic model. For the XXZ spin-1=2 chain, it takes
values between K ¼ 1=4 and 1 but is close to K ¼ 1=2 for
an extended regime [21]. In summary, the spin action
becomes

Ss ¼
X
i¼x;y;z

X
α¼u;s

T
X
iω

Z
p
Sαi ½χαi �−1Sαi ; ð5Þ

where
R
p ¼ R

d3p=ð2πÞ3 and T
P

iω is a summation over
Matsubara frequencies. For the array of noninteracting
chains, the spin susceptibility does not depend on the
perpendicular momenta, i.e., χαi ðpk; p⊥Þ ¼ χðpkÞ.
The electronic part is assumed to be well described by

free electrons in a magnetic field, since the material is an
excellent metal,

Sψ ¼ T
X
iω

Z
p
ðiω − ξpσÞψ†

p;σψp;σ: ð6Þ

The dispersion relation ξp;σ ¼ p2=ð2mÞ − μσ accounts for
the Zeeman splitting modeled by the spin-dependent
chemical potential μσ ¼ μ − σh with σ ¼ �. This defines
the Fermi vectors pFσ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mμσ

p
and pF ¼ ffiffiffiffiffiffiffiffiffi

2mμ
p

. We
label the directions perpendicular and parallel to the local
spin chains by p⊥ and pk. Both descriptions for electrons
and spins are only valid up to a momentum cutoff Λ.
We model the coupling of the quasi one-dimensional

spinons in the Yb chains to the 3D electrons as

Sc ¼ JT2
X
ik0;ik00

Z
k

Z
k0
V�
kσVk0σ0ψ

†
kσσσσ0ψk0σ0Sðk − k0Þ: ð7Þ

The coupling J is small and only weakly hybridizes the
conduction electrons and the spins. The matrix elements are
given by the overlaps of the plane waves of conduction
electrons with the wave functions of the f electrons, which
are described by the effective spins S ¼ 1=2. The f-
electron wave functions are spherical harmonics with
angular momentum L¼3;J¼7=2, and mL ¼ �3. Their
spacial parts are Vk�¼Y3;�3ðk=kÞ∼ðkk�ik⊥;1Þ3=k3 with
k⊥ ¼ ðk⊥;1; k⊥;2ÞT . In these notations, the quantization axis
of the Yb moments is along k⊥;2.
In summary, the action becomes S ¼ Ss þ Sψ þ Sc. The

model is similar to a generalized spin-fermion model;
however, in our case spins disperse only in one direction
and they are independent degrees of freedom with non-
trivial dynamics inherited from their local character.
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Non-Fermi-liquid regime.—The scattering between elec-
trons and spinons leads to remarkable modifications in their
correlation functions. In particular, as we demonstrate, it can
destroy the Fermi-liquid character of the conduction elec-
trons. The corresponding information is encoded in the
imaginary part of the electron self-energy—the relaxation
rate. The general form of the one-loop electron self-
energy is shown in Fig. 1 and reads Σσðiω;kÞ ¼
J2
P

i;αT
P

iν

R
q jVkσj2jVkþqσ0 j2χαi ðiν;qkÞGσ0 ðiωþ iν;kþ qÞ

with the bare electron propagator G−1
σ ðiω; kÞ ¼ iω − ξkσ.

In principle, we have to sumover all critical spinmodes χαi in
this expression, but we found that the leading contribution
comes from the staggeredmodes (χszz and χsþ−), andwe focus
on them in the following. The one-loop self-energy due to
the uniform modes is given in the Supplemental Material
(SM) [22].
A special feature of our model is that due to the

one-dimensional character of the spin excitations these
staggered modes affect a significant part of the FS. The
dominant contribution to the self-energy on the FS comes
from states, where the propagators G and χ are singular;
i.e., k and kþ q are close to the FS and q is close to Q.
Typically, for large Q, only small parts of the FS become
“hot” so that their effect is limited. But because of the one-
dimensional spin excitations, only the parallel component
qk ≈Q is restricted in our case, and we can use the
perpendicular component q⊥ to reach a final state on the
FS. This defines an entire continuum manifold of hot states
on the FS. The mechanism is sketched in Fig. 2.
In the following, we are interested in the frequency

dependence of the self-energy. It is thus sufficient to
consider the FS-averaged relaxation rate,

ΓσðωÞ ¼ −
Z
p

δðξpσÞ
Nσ

ImΣR
σ ðω; pÞ; ð8Þ

with the retarded self-energy ΣRðω; pÞ and the density of
states at the σ-FS Nσ ¼ pFσm=ð2π2Þ.

The resulting FS-averaged relaxation rate due to scatter-
ing with staggered spin modes is

ΓσðωÞ ≈ NσCσσω
2K þ N σ̄Cσσ̄ω

1
2K; ð9Þ

with σ̄ ¼ −σ and the prefactors including the averaged

couplingCσσ0 ¼f½χ0σσ0 sinðγσσ0πÞ�=½vsð1−γσσ0 Þ�gcV2 andcV2¼
J2
R
p

R
qf½δðξσpÞδðξσ0pþqþQσσ0 Þ�=½NσNσ0 �gjVσpj2jVσ0pþqþQσσ0 j2.

In this notation, χσσ ¼ χzz, χσσ̄ ¼ χþ− and γσσ ¼ 1 − K,
γσσ̄ ¼ 1 − 1=ð4KÞ. Details of the calculation are given in the
SM [22]. We find that the scaling of the averaged relaxation
rate depends on the Luttinger parameterK, which varies with
the magnetic field.
Additionally, we can include the electron dynamics into

the spin susceptibility and compute the electron self-energy
with the renormalized spin propagator (see Fig. 1). In
contrast to the “conventional” spin-fermion model, the
spins in our heavy-fermion system are independent degrees
of freedom, not composite quasiparticles from electron-
hole excitations. This means that the corrections to the spin
susceptibility become important for energies much smaller
than the Fermi energy ω < vsΛ ≪ EF. We are, however,
interested in exactly this low-energy regime. The electron-
renormalized spin propagator becomes χ−1ðω; qÞ ¼
χ−1bareðω; qÞ þ Πðω; qÞ. The real part of the polarization
operator Π0 is approximately constant. The imaginary part
depends on the characteristic momentum transfer mediated
by the spins. For large momentum transfers, it takes the
form [23] Πðω; qÞ ≈ −Πr − iτq⊥ω, where the momentum
dependence of the imaginary part is mainly due to
perpendicular momenta as indicated by the subscript
because qk ≈Q. The leading contribution to the electron
scattering rate including the polarization bubble in the spin
correlation functions is then modified to (see SM [22])

(a)

(b)

FIG. 1. (a) Diagrammatic representation of the correction to the
electron self-energy without and with renormalized spin propa-
gator. (b) Dyson equation for the current vertex. The empty
(black) triangle with the attached dotted line denotes the bare
(full) current vertex. Solid (dashed) lines are electron (spin)
propagators.

(a) (b)

FIG. 2. (a) If spin and electron correlations are both three
dimensional, only a few hot spots or lines appear (colored bright
points), where the initial state k and the final state kþQ are both
at the FS. (b) If spins are quasi one dimensional and electrons are
three dimensional, a significant part of the FS is hot (colored
bright part in the sketch). The reason is that for almost every
initial k on the FS, one can find a final kþ q that is also on the FS
due to the free choice of q⊥. For a spherical FS, it depends on the
ratio Q=kF which part of the FS is hot. If Q < kF, the whole
FS is hot.
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ΓσðωÞ ¼
X
σ0
Nσ0Cσσ0ω: ð10Þ

We see that, if one takes into account the renormalization of
the spin susceptibility by the conduction electrons, the
result shows a linear scaling, independent of the value of
the Luttinger liquid exponent.
Conductivity.—The temperature dependence of the

resistivity is one of the hallmarks of NFL behavior. In a
Fermi liquid, it is typically quadratic with temperature. In
contrast, in this section, we show that the resistivity scales
linearly with T in the field-induced critical regime
Furthermore, since the scattering is caused by the one-
dimensional chains, the coefficient of the linear T term
turns out to be different for the directions parallel and
perpendicular to the chains. For simplicity, we perform the
calculations at zero temperature and assume that the scaling
with temperature is the same as the scaling with frequency
(see SM [22]).
The dc conductivity can be expressed in terms of the

Kubo formula as

σσk=⊥ ≈
6e2nσ
ck=⊥m

Z
dϵ
2π

�
−
dnF
dϵ

�
γk=⊥σ ðϵÞ
ΓσðϵÞ

; ð11Þ

with ci ¼ 1þ δi;⊥ and the number density nσ ¼ p3
Fσ=

ð6π2Þ. γσ denotes the scalar part of the current vertex
Γσ ¼ pγσ , and we define its FS average for the different

directions as γk=⊥σ ðϵÞ ¼ ð1=NσÞ
R
pðp2

k=⊥=p2ÞδðξσpÞγσðp;
ϵ − i0þ; ϵþ i0þÞ. Their sum, in turn, is the average of

the scalar current vertex γσðϵÞ ¼ γkσðϵÞ þ γ⊥σ ðϵÞ ¼
ð1=NσÞ

R
p δðξσpÞγσðp; ϵ − i0þ; ϵþ i0þÞ. The approxima-

tions used here and in the following are explained in the
SM [22]. They only affect prefactors but lead to the correct
scaling behavior [24,25].
For the correct scaling of the conductivity, vertex

corrections are usually important because they weight
the scattering events appropriately [26]. The vertex cor-
rections can be determined from the Dyson equation for the
current vertex, whose diagrammatic representation is
shown in Fig. 1. This leads to

p2i γσðp; ip; ipþ iωÞ

¼ p2i þ J2
X
σ0
T
X
iq

Z
q
jVðpÞj2jVðqÞj2χσσ0 ðiq− ip;q− pÞ

×Gðiq;qÞGðiqþ iω;qÞpiqiγσ0 ðq; iq; iqþ iωÞ; ð12Þ

with i ¼ k;⊥. The resulting scalar current vertex is con-
stant to the leading order,

γσ ≈
1

1 − f
þOðh=EFÞ; ð13Þ

with f ¼ 1 −Q2=ð2p2
FÞ þOðh=EFÞ, and we have

neglected terms of order of the magnetic field over the
Fermi energy h=EF ≪ 1. The full expression is given in the
SM [22]. As used before, Q is the typical momentum
transfer parallel to the chains. To estimate the relative

magnitude of γkσ and γ⊥σ , we solve Eq. (12) for γ⊥σ . In the
integral, χ only depends on qk and pk, and the interaction
and the Green’s functions are even with respect to
q⊥ → −q⊥. In contrast, p⊥q⊥ is odd. Thus, the constant

γ⊥σ ¼ 1

Nσ

Z
p
δðξσpÞ

p2⊥
p2

¼ 2

3
ð14Þ

is the solution of the equation for the vertex γ⊥σ . This result
comes from the one dimensionality of the spin correlations
and is independent of the exact form of the interaction jVj2
as long as the interaction is symmetric under inversion. It
further follows that

γkσ ¼ γσ − γ⊥σ ≈
2p2

F

Q2
− γ⊥σ : ð15Þ

Thus, we find that the direction-resolved scalar current
vertices are constant to leading order. Then, the scaling of
the conductivities is given by the scaling of the relaxation
rate. The reason for this is, on the one hand, that vertex
corrections for γ⊥σ are negligible and, on the other hand, that
Q is finite (forQ → 0, f → 1, and γσ is no longer constant).
In summary, we obtain for the different resistivities,

ρk;⊥σ ¼ 1

σσk;⊥
∝
ck;⊥
γk;⊥σ

ΓσðTÞ: ð16Þ

This means linear scaling in temperature independent of K
if the polarization Π is added to the calculation and
ΓσðTÞ ∝ T. For higher energies, when the renormalization
by Π can be neglected, we found for the leading behavior
Γσ ∝ T2K if 1=4 < K < 1=2 and Γσ ∝ Tð1=2KÞ if 1=2 <
K < 1. In this case, we still obtain approximately linear
scaling, because for the Heisenberg-Ising chain K ≈ 1=2
for a significant part of the critical field regime [21].
Furthermore, we can estimate the ratio of parallel and
perpendicular resistivity, which depends on the ratio ofQ to
pF. This, in turn, is a measure for the “hotness” of the FS
(Fig. 2). For example, if a dominant part of the FS is hot and
Q≲ pF, we find

ρk < ρ⊥=4: ð17Þ

The relative smallness of the parallel resistivity can be
traced back to the negligible corrections of the current
vertex perpendicular to the chains, which vanish because of
the different dimensionality of the conduction electrons and
the local moments.
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Conclusion.—We have studied a field-induced NFL
regime motivated by the heavy-fermion metal Yb2Pt2Pb.
In this material, there are two weakly coupled subsystems—
itinerant electrons from Pb and Pt and localized moments
fromYbatoms. The lowenergyphysics are determinedby the
fact that these subsystems have different effective space
dimensionality: magnetic excitations can be described by
one-dimensional spin-1=2 chains, while conduction electrons
disperse in three dimensions [12]. In a sufficiently strong
magnetic field, the magnetic excitations become critical.
Here, the difference in the dimensionalities comes to the
fore because the spin fluctuations being one dimensional are
critical on an entire plane in 3D momentum space. This
greatly strengthens the scattering of the conduction electrons.
We have calculated the resulting electronic relaxation rate and
dc conductivity using the exact expressions for the critical
spin correlations functions in 1D and found a clear NFL
regime for intermediatemagnetic fields. In this regime, where
the spins are in the Luttinger liquid phase, the relaxation rate
and conductivity scale approximately linearly with frequency
or temperature due to scattering on staggered spins fluctua-
tions. Furthermore, we have given an estimate for the
anisotropy of the resistivities parallel and perpendicular to
the chains. The parallel resistivity is markedly smaller,
because vertex corrections for the perpendicular resistivity
vanish.
In summary, we expect the following behavior for

Yb2Pt2Pb in a magnetic field in agreement with the
experiment [15]. At small magnetic fields, the spin exci-
tations are gapped and scattering off them is suppressed at
low temperatures. The conductivity can be understood in
terms of a conventional Fermi liquid. With increasing
magnetic field, the gap closes, and the electron dynamics
is altered through scattering with the spins as revealed by
the NFL scaling of the conductivity. Increasing the mag-
netic field further leads to saturation of the magnetization of
the spins. A new gap emerges in their excitation spectrum,
and we return to the Fermi-liquid description.
Our results characterize a novel form of criticality in a

system with coupled local and itinerant degrees of freedom
beyond the Doniach paradigm, with different, effective space
dimensionality of the subsystems. Besides their general
interest with regard to criticality due to localized moments,
they could also be of relevance for further compounds
of the series R2T2M (R ¼ rare earths or actinides; T ¼
transitionmetals;M ¼ Cd, In, Sn, and Pb) and other systems
in the regime of weak Kondo screening. In general, it would
be exciting to identify other materials where the coupling to a
critical subsystem with different effective dimensionality
induces NFL behavior in the electronic sector.
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