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The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum
turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the
superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that
the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices
become dense. This result is consistent with recently performed visualization experiments. We introduce a
dimensionless parameter that characterizes the deformation of the velocity profile.
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Introduction.—When a fluid system consists of several
continuous fields, their interaction as well as the generation
mechanism of ordered or disordered states is complex.
Such complex systems are ubiquitous in nature [1], for
example, in magnetohydrodynamics [2,3] and two-
component Bose-Einstein condensates of cold atomic gases
[4]. The same result is found for the two-fluid model in
low-temperature physics. Since the proposal by Tisza [5]
and Landau [6], the two-fluid model has functioned as a
powerful phenomenological model in superfluidity and
superconductivity [7]. The model states that the system
consists of an inviscid superfluid (density ρs) and a viscous
normal fluid (density ρn) with two velocity fields, vs and vn.
A superfluid is subject to the severe quantum-mechanical
constraint, and any rotational motion is sustained only by
quantized vortices with quantum circulation κ. The two-
fluid model has been useful for understanding various
phenomena in low-temperature physics [7], but its coupled
dynamics has seldom been studied.
The system most characteristic of the two-fluid model

is thermal counterflow in superfluid 4He, which exhibits a
typical stage of quantum hydrodynamics and quantum
turbulence [8–12]. In usual experiments of thermal counter-
flow, superfluid 4He is confined within a channel, with one
closed end and the other end connected to a heliumbath.Upon
heating the closed end, the normal fluid flows towards the
helium bath, and the superfluid flows in the opposite direction
to satisfy the total mass conservation

R ðρnvn þ ρsvsÞdr ¼ 0,
with the integral performed over the cross section of the
channel. When the relative velocity jvnsj ¼ jvn − vsj between
two fluids exceeds the critical value, the superfluid becomes
turbulent, and consists of a tangle of quantized vortices
[13–17]. The vortex filament model (VFM) is suitable for

superfluid 4He; the numerical simulations of the VFM in a
bulk under the prescribed normal fluid flow revealed many
properties of thermal counterflow [18,19].
Two kinds of experiments in counterflow require theo-

retical and numerical approaches beyond the present state.
One is the recent visualization experiments [20]. Marakov
et al. observed the flow profiles of the normal fluid in a
square channel [21]. By increasing the heat, the profile of
the normal fluid velocity changed from the laminar
Poiseuille, via the laminar tail flattened, and eventually
to the turbulent flow. To date, the laminar tail-flattened
profile, in which the tail part becomes flattened, has not
been reported in classical hydrodynamics. The other is the
experiments observing several kinds of superfluid turbu-
lence [22]. When the aspect ratio of the cross section of the
channel was low, the system showed two turbulent states,
namely, T1 and T2. If the aspect ratio of the channel was
high, the counterflow exhibited only a single turbulent state
T3. There is little information about these different turbu-
lent states and their dependence on the aspect ratio.
Based on the experiments, we consider two important

effects from theoretical and numerical perspectives. First,
we consider the boundary effects of the channel walls.
A few studies simulated the VFM under the prescribed
normal fluid velocity profile between two parallel plates or
in a square channel to find inhomogeneous vortex tangles
affected by the boundaries [23–26]. The other is the
coupled dynamics of superfluid and normal fluid.
Because the VFM is Lagrangian and the Navier-Stokes
equations describing the normal fluid are Eulerian, it is
difficult to coordinate the two different schemes. There
have been only limited numerical works on the coupled
dynamics, which is confined to the case of a bulk [27,28].
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A few theoretical and numerical studies are useful in
clarifying these observations. Melotte and Barenghi per-
formed the linear stability analysis of normal fluid affected
by a vortex tangle through mutual friction to study the
transition from T1 to T2 [29]. Khomenko et al. studied
numerically the three-dimensional (3D) coupled dynamics
of the two-fluid model between two parallel plates [30].
They simplified the Navier-Stokes equations of the normal
fluid by spatially averaging vn over the two directions
parallel to the plates. The profile of the normal fluid was
deformed, which differed from the observations [21]. The
numerical studies of two-dimensional counterflow were
performed [31], which differs from the 3D system. Saluto
et al. studied analytically the velocity profile of the normal
fluid by using the one-fluid model [32,33], and found that
the velocity profile could be flattened by superfluid
turbulence.
Coupled dynamics of two fluids.—We used the VFM

for quantized vortices and the Navier-Stokes equations
for normal fluid, then connected them by mutual friction
[27,28]. The VFM represents a quantized vortex as a
parametric form as s ¼ sðξ; tÞ [34]. At zero temperature,
the velocity _s0ðξ; tÞ on the filaments is given by
_s0 ¼ vs;ω þ vs;b þ vs;a, where vs;ω is the velocity field
produced by all the vortex filaments, vs;b is the velocity
field produced by solid boundaries, and vs;a is the applied
uniform flow of the superfluid. The velocity field vs;ω is
given by the Biot-Savart law vs;ωðxÞ ¼ ðκ=4πÞ RLðs1 − xÞ×
ds1=js1 − xj3, where s1 refers to a point on the filament, and
the integration is performed along all of the filaments [19].
At finite temperatures, the quantized vortices are affected
by the normal fluid through the mutual friction force, and
the velocity _s of quantized vortices at a point s is given by

_s ¼ _s0 þ αs0 × ðvn − _s0Þ − α0s0 × ½s0 × ðvn − _s0Þ�; ð1Þ
where α and α0 are the temperature-dependent coefficients
of the mutual friction, and s0 is the unit vector along the
filaments.
The dynamics of the normal fluid obeys the Navier-

Stokes equations [35],

ρn

�∂vn
∂t þ ðvn · ∇Þvn

�
¼ −

ρn
ρ
∇pþ ηn∇2vn þ Fns; ð2Þ

where ∇p=ρ ¼ ∇P=ρþ ρsS∇T=ρn is the sum of the
pressure gradient and temperature gradient, ηn is the
viscosity of normal fluid, and Fns is the mutual friction
force per unit volume. We close these equations using the
incompressible condition ∇ · vn ¼ 0 for Eq. (2). In this
Letter, we focus on the deformed profile of normal fluid
velocity, so we employ the coarse-grained expression of
the mutual friction force, FnsðxÞ ¼ ½1=Ω0ðxÞ� RL0ðxÞ f ðξÞdξ,
where f ðξÞ=ρsκ ¼ αs0 × ½s0 × ðvn − _s0Þ� þ α0s0 × ðvn − _s0Þ
[35]. Here, Ω0ðxÞ is a local subvolume at x, and the integral
path L0ðxÞ represents vortex lines in the subvolume Ω0ðxÞ.

Details are described in Sec. I of Supplemental Material
[36]. Because vn is discretized in this formulation, we use a
linear interpolation to obtain the value of vn at the position s
in Eq. (1).
Normal fluid has two dimensionless parameters: one is a

Reynolds number Re ¼ ρnv̄nD=ηn, and the other is a
parameter ϕ characterizing the mutual friction. Here, vn is
the streamwise component of vn, v̄n is the averaged value of
vn over the channel cross section, andD is the half width of
the cross section. The parameter ϕ is introduced as follows.
When the mutual friction is negligible, Eq. (2) becomes the
usual Navier-Stokes equations, and the normal fluid velocity
should take the Poiseuille profile below the critical Reynolds
number. If the mutual friction becomes larger than the
viscous forces, it can change the velocity profile from the
Poiseuille profile. Their competition is characterized by a
ratio jFnsj=jηn∇2vnj. In a thermal counterflow, the counter-
flow condition v̄ns ¼ v̄n − v̄s ¼ ρv̄n=ρs is satisfied, and we
can use the Gorter-Mellink relation F̄ns ¼ gρsκαLv̄ns
[22,35]. Here, L is a vortex line density: L ¼ ð1=ΩÞ RL dξ
with a sample volume Ω. Then, the ratio is reduced to

ϕ ¼ gρκαLD2

ηn
: ð3Þ

To calculate the value of Eq. (3), we assume isotropic tangle:
g ¼ 2=3. A similar parameter is also introduced in Ref. [29].
Numerical simulation.—Numerical simulations of both

fluids were performed under the following conditions. The
computing box is 1.0 × 1.0 × 1.0 cm3. The periodic boun-
dary condition is applied in the x direction, whereas the
solid boundary condition is applied in the y and z
directions. The time resolutions of both fluids are
Δt ¼ 1.0 × 10−3 s. The vortex lines are discretized into
a number of points held at a minimum-space resolution of
Δξ ¼ 8.0 × 10−3 cm. We reconnected two vortices artifi-
cially when the vortices approached each other more
closely than Δξ. We eliminated vortices that were shorter
than 5 × Δξ. The integration of time for the normal fluid is
achieved using the second-order Adams-Bashforth method,
and the second-order finite-difference method was adopted
for spatial differentiation. The inhomogeneous spatial grid
of the normal fluid is Nx × Ny × Nz ¼ 153. The temper-
ature is T ¼ 2.0 K, and the values of the various parameters
are shown in Ref. [37]. The y and z components of Fns are
neglected while calculating Eq. (2), and Fx

ns is averaged
over the x direction. We regard the counterflow condition as
vs;a ¼ −ρnv̄n=ρs [25]. The mean velocity of the normal
fluid is a constant parameter. The numerical simulation
begins with eight randomly oriented loops for quantized
vortices and the Poiseuille flow for a normal fluid.
Figure 1 shows the quantized vortices and normal fluid

velocity profile for v̄n ¼ 1.0 mm=s [38]. At t ¼ 20 s, the
vortices are not so dense that the normal fluid still keeps
the Poiseuille profile. However, when the vortices become
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dense at t ¼ 40 s, the strong mutual friction significantly
deforms the normal fluid velocity profile; the central
velocity decreases much from that of the Poiseuille profile;
in contrast, the velocity near the channel walls increases.
Thus, the velocity profile of the normal fluid may be
deformed when the vortices are sufficiently dense, and
when the parameter ϕð∝ LÞ of Eq. (3) is large.
The deformation of the normal fluid velocity profile can

be measured by the reduction of the normal fluid velocity
vn;c at the center ðy; zÞ ¼ ð0.5 cm; 0.5 cmÞ of the channel
cross section. By increasing the mean relative velocity
v̄ns;a ¼ v̄n − vs;a ¼ ρv̄n=ρs, the eventual vortex line density
increases according to the stationary solution of Vinen’s
equation [15,22,25]. Then, the eventual value of ϕ increases
with v̄n, andwe can expect the significant deformation of the
normal fluid velocity profile at larger v̄n. As shown in
Fig. 2(a), the significant reduction of vn;c is observed for the
large mean velocity v̄n ¼ 1.0; 0.9; 0.8 mm=s. When the
vortices become too dense, we cannot continue the numeri-
cal simulation, and we stop it. At v̄n ¼ 0.7 mm=s, the value
of vn;c starts to decrease at t ≈ 60 s, and it fluctuates after
t ≈ 65 s around some constant value that is different from
the initial one [39]. This shows that the normal fluid reaches
another state with the deformed velocity profile. In this
Letter, we call this state “the deformation state.” The smaller
velocity v̄n ¼ 0.6 mm=s is unable to trigger a significant
deformation of the normal fluid velocity profile. The point is
the onset of the instability, namely, the timing when vn;c
starts to decrease significantly. The onset time is indicated
by the arrows in Fig. 2(a). When the mean velocity v̄ns;a
increases, the energy injection increases to accelerate the
instability onset.

This instability is systematically understood by the
dimensionless parameter ϕ of the mutual friction force
of Eq. (3). Figure 2(b) shows the values of ϕ as a function
of time, corresponding to Fig. 2(a). We define the values of
ϕ at the onset time as its critical value for the velocity
deformation. The points at the onset time are marked by the
green circles in Fig. 2(b), and the instability is found to
occur for 30 < ϕ < 70. The critical value of ϕ for the
instability depends on the v̄n. According to the linear
stability analysis, the Poiseuille profile of the normal fluid
becomes unstable when ϕ exceeds about 13 [29]. However,
as in Fig. 2(b), the critical values of the deformation are
several times larger than that of the linear stability analysis.
The value of ϕð∝ LÞ increases gradually before the onset

time, after which it increases rapidly. This is closely related
to the deformation of the normal fluid velocity profile. As
mentioned in Ref. [25], the Poiseuille normal flow makes
the inhomogeneous vortex tangle, and its vortex line
density grows at a slower rate than that of the homogeneous
vortex tangle with uniform normal flow. After the onset
time, the velocity profile of the normal fluid becomes
flatter, which makes the vortex line density grow more
rapidly. In other words, the vortex tangle flattens the
velocity profile of the normal fluid such that it accelerates
its own growth.
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FIG. 1. The quantized vortices and normal fluid velocity profile
in thermal counterflow are obtained by numerical simulation
of the coupled dynamics at v̄n ¼ 1.0 mm=s and T ¼ 2.0 K
(Re ¼ 300). (Top) The black curves show vortex filaments that
represent quantized vortices. (Bottom) The color map shows the x
component of the normal fluid velocity. Here, the mean velocity
v̄n of the normal fluid is constant.
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In this Letter, we can investigate the simultaneous
dynamics of the two fluids. It is important to reveal how
the two fluids affect each other. We found that the flattening
of the normal fluid velocity is caused by the interaction.
Figure 3(a) shows the velocity profiles at t ¼ 20; 40 s for
v̄n ¼ 1.0 mm=s. Here, the superfluid velocity is calculated
by vsðxÞ ¼ vs;ωðxÞ þ vs;bðxÞ þ vs;aðxÞ. At t ¼ 20 s, the
profile vn remains nearly parabolic, and the profile vs is
almost the same as the uniform applied velocity vs;a.
Because the tangle of the quantized vortices does not
yet develop fully, the mutual friction is still small as shown
in Fig. 2(b). Hence, the profile vn is not modified much, and
the velocity vs;ω induced by the quantized vortices remains
much smaller than the applied one vs;a. At t ¼ 40 s, the
profile vn is squashed, and the superfluid flow is reduced
around the center. This implies that the relative velocity vns
tends to be uniform to decrease the mutual friction, namely,
the profiles of vn and vs;ω þ vs;b tend to mimic each other.
Figure 3(b) shows the profile of the local vortex line density
L0ðxÞ ¼ ½1=Ω0ðxÞ� RL0ðxÞ dξ. At t ¼ 20 s, the vortices con-
centrate near the channel walls. This comes from that the
profile vns is spatially nonuniform, and the quantized
vortices are nonuniformly affected by the mutual friction:
the terms including α and α0 in Eq. (1) are significantly
nonuniform. At t ¼ 40 s, the profile L0 tends to be uniform,
because the profile vns becomes more uniform. These
cooperative dynamics of the two fluids cause the flattened
velocity profile of the normal fluid.
In order to investigate the velocity profile in the defor-

mation state, we multiply Fns by a scale factor
c ≥ 1 in Eq. (2): Fns → cFns. Here, we keep the values

of α and α0 in Eq. (1), which means that the mutual friction
from the normal fluid to the superfluid is not amplified.
While this is artificial, it is useful to know how the larger
mutual friction deforms the velocity profile. The numerical
simulation is performed for v̄n ¼ 0.7 mm=s while changing
the values of c. As shown in Fig. 4(a), in each case, the
normal fluid reaches the deformation state, where the value
of vn;c fluctuates around some constant value. The central
velocity decreases more with c. This comes from that the
value of the amplified mutual friction cϕ becomes larger
with c, as shown in Fig. 4(b). Figure 4(c) shows the velocity
profiles of normal fluid at z ¼ 0.5 cm [40]. The velocity
profile becomes flatter as c increases. The profile for c ¼ 10
is not exactly the same as that of the experiments [21]. In the
experiments, the velocity profile is flattened near the walls
but not fully flattened in the central region. In Fig. 4(c), the
latter behavior does not appear, and the profile close to the
walls keeps nearly parabolic unlike the experiments. In
works such as in Ref. [21], the values of ϕ are of the order
of 103. In our simulation, because cϕ ∼ 103 at c ¼ 10, the
experiments may be interpreted as the case of c ¼ 10 in
Fig. 4(c). The velocity profile is largely flattened for c ¼ 10,
and this is consistent with the experiments.
Conclusions.—The coupled dynamics of two fluids has

been the frontier of low-temperature physics. We con-
structed the numerical method of the coupled dynamics,
and performed the numerical simulation of the thermal
counterflow in a square channel. To study systematically
the deformation of the normal fluid velocity profile, we
introduced the dimensionless parameter. Using this param-
eter, we analyzed the extent of the deformation and the
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critical values for the instability. The significantly flattened
velocity profile of the normal fluid was obtained when the
mutual friction force was sufficiently strong. These results
are consistent with the recent visualization experiments.
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