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Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the
proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion
mass mπ ∼ 806 MeV are determined using lattice quantum chromodynamics. At the physical quark
masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of
nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their
spin content, integrated transversity, and the quark contributions to their electric dipole moments. External
fields are used to directly access the quark-line connected matrix elements of quark bilinear operators,
and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark
contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-
nucleon estimates. Given the particularly large, Oð10%Þ, size of nuclear effects in the scalar matrix
elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark
matter direct-detection experiments using nuclear targets.
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Understanding the spin and flavor structure of nuclei at
the level of quarks and gluons is essential to the inter-
pretation of many searches for beyond the Standard Model
(BSM) physics. The simplest aspects of the structure of
nuclei are revealed through their static responses to external
probes. Vector charges of a nucleus are constrained by
symmetries and define the number of valence quarks of a
given flavor, while matrix elements (MEs) of the axial
currents encode the spin carried by quarks and gluons
[1–3] and play a central role in weak-interaction processes
including single- and double-β decay. While difficult
to probe experimentally, the (renormalization-scale-
dependent) scalar and tensor MEs provide important
theoretical input for the interpretation of results from dark

matter direct detection experiments [4] and searches for
new physics in precision spectroscopy [5,6]. Tensor MEs
determine the quark electric dipole moment (EDM) con-
tributions to nuclear EDMs through the dimension-fiveCP-
odd operator q̄σμνqF̃μν (where F̃μν ¼ 1

2
ϵμνρσFρσ is the dual

of the electromagnetic field strength tensor Fμν and q is the
quark field) and are necessary to interpret corresponding
searches for BSM CP violation [7–10].
In interpreting intensity-frontier searches for new physics

using nuclear targets, it is important to consider multi-
nucleon effects in nuclear MEs. For axial MEs, relevant for
Gamow-Teller (GT) transitions, experimental measure-
ments generally differ substantially from naive single-
nucleon (NSN) estimates using nuclear ground states with
noninteracting nucleons occupying only the lowest shell-
model states [11–15]. Phenomenologically, nuclear shell-
model calculations of β-decay rates using quenched values
of the nucleon axial coupling are known to agree better with
experimental values [14–18]. For light nuclei with A ≤ 10,
recent Green function Monte Carlo calculations of GTMEs
using chiral currents and potentials [19–23] have shown that
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experimental values of axial MEs can be reproduced by
including correlated two-nucleon effects, constrained by
experimental observations in few-body systems. In larger
nuclei, multibody nuclear effects make such calculations
significantly more challenging (see, e.g., Refs. [24,25] for
recent progress). For the scalar and tensor currents, chiral
effective field theories (EFTs) have also been used to
organize multinucleon effects in nuclear MEs [26–42].
In contrast to the axial case, these effects are not well
constrained by experiment, but could be determined by
matching to ab initio Standard Model calculations of few-
body matrix elements using lattice quantum chromodynam-
ics (lattice QCD). In principle, lattice QCD can be used to
calculate the nuclearMEs of interest directly from quark and
gluon interactions. While such calculations are extremely
challenging, they have now been performed forA ≤ 4, albeit
without fully controlled uncertainties and will be improved
and extended to larger nuclei through advances in algo-
rithms and growth of computational resources.
In this Letter, a first-principles lattice QCD study of

forward matrix elements of the scalar, axial, and tensor
currents, henceforth referred to as “charges,” in the nucleon
and light nuclei up to atomic number A ¼ 3 is presented, at
unphysical values of the quark masses. These nuclear
matrix elements are seen to deviate from the NSN esti-
mates, with particularly large deviations for the scalar
current. As many theories of dark matter couple to the
Standard Model through scalar exchange, it is important to
quantify these potentially large effects in the interpretation
of dark matter direct detection experiments.
Lattice QCD methodology.—The numerical calculations

presented here are performed using one ensemble of gauge-
field configurations generated with a clover-improved fer-
mion action [43] and a Lüscher-Weisz gauge action [44] with
Nf ¼ 3 degenerate light-quark flavors. The quark masses
are tuned to produce a pion of mass mπ ∼ 806 MeV. The
spacetimevolumeof the ensemble isL3 × T ¼ 323 × 48, and
the lattice spacing is a ∼ 0.145 fm. Further details of the
ensemble are given in Ref. [45].
The matrix elements of the scalar, axial, and tensor

currents are determined from lattice QCD correlation
functions calculated on each gauge-field configuration.
These correlation functions separate into two pieces: one
in which the quarks interacting with the operator are
connected to the hadronic source and sink, and one in
which they are not, referred to as quark-line connected and
disconnected contributions, respectively. The quark-line
connected contributions to the matrix elements are deter-
mined using the fixed-order background-field approach
introduced in Ref. [46] and discussed in detail for the axial
case in Refs. [47–49]. Here, Dirac bilinears q̄q, q̄γ3γ5q, and
q̄γ1γ2q for q ¼ u, d are used to couple to the scalar,
axial, and tensor fields, respectively. Correlation functions
are constructed with seven different values of the field
strengths for proton p, deuteron d, diproton pp, and 3He

states. These correlation functions are built from quark
propagators originating from a smeared source and having
either a smeared (SS) or point (SP) sink [48]. Matrix
elements are extracted from the linear responses of the
correlation functions to the external fields as detailed in
Refs. [46,48,49], using correlated one- and two-state fits.
As an illustration, fits determining the connected isoscalar
scalar matrix element in 3He are shown in Fig. 1. Fits for all
states, as well as details of the statistical sampling, are
provided in the Supplemental Material [50]. It is important
to note that, at the SU(3)-symmetric value of the quark
masses used in this study, all of the states considered are
bound ground states with binding energies significantly
larger than those in nature [45,51–53] and are spatially
compact with respect to the lattice volume. Finite-volume
effects in the matrix elements are therefore exponentially
small in γL, where γ is the bindingmomentumof the system.
Calculation of the quark-line disconnected contributions

to each matrix element requires all-to-all propagators, and it
is not feasible to compute these objects exactly for the
lattice volume used in this Letter. Instead, the requisite
traces are estimated stochastically [54–58] using hierarchi-
cal probing [59] and singular-value deflation [60,61] (see
Refs. [60,62] for complete details). The uncertainties from
the stochastic sampling are included in the statistical
uncertainties that are presented. The disconnected contri-
butions are subsequently correlated with SS and SP two-
point correlation functions with the relevant quantum
numbers to construct the three-point correlation functions.
After subtraction of the contributions, in which the current
insertions and the two-point functions are uncorrelated, the
ratios of the three-point functions to the two-point functions
are formed. Finally, the ground-state matrix elements are
extracted using correlated two-state fits to the sink and

FIG. 1. The bare effective matrix element of the connected

isoscalar 3He scalar charge, gð8Þ3He;S
¼ h3Hejq̄Λð8Þqj3Hei, where the

blue circles and orange diamonds denote SP and SS results,
respectively. The blue band illustrates a correlated two-state fit of
the form ∼Aþ Be−Δt, to the SP correlation functions, while the
green band denotes the final fit result with combined statistical
and systematic uncertainties.
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operator-insertion time dependence. Bare results for the
3He disconnected scalar matrix element and the corre-
sponding fits are shown in Fig. 2. Further technical details
of the statistical sampling of the correlation functions, as
well as figures showing the analysis of the other discon-
nected matrix elements, are presented in the Supplemental
Material [50].
Combining the quark-line connected and disconnected

contributions to the matrix elements allows a complete flavor
decomposition of the scalar, axial, and tensor charges in
the light nuclei studied. The bare lattice operators are
renormalized using the flavor-nonsinglet renormalization
constants ZS ¼ 0.823ð16Þ, ZA ¼ 0.879ð12Þ, and ZT ¼
0.889ð16Þ, determined in Ref. [63] from ensembles with
the same action. For the scalar and tensor operators, results
are presented in the MS scheme at a renormalization scale of
μ ¼ 2 GeV. The isovector charges are free from significant
operator mixing, while the isoscalar matrix elements are only
determined up to mixings with gluon operators, which are
not computed. For the isoscalar scalar and tensor operators,
this is a small effect [64,65], while for the isoscalar axial
charges, mixing through the flavor-singlet chiral anomaly is
potentially significant. Nevertheless, to leading order in the
strong coupling, these renormalization factors, mixing, and
the renormalization-scale dependence of the scalar and
tensor charges, cancel in ratios of nuclear matrix elements
to the matrix elements of the same operators in the proton
[66]. These ratios, and their differences from the expect-
ations for noninteracting collections of nucleons, encode
nuclear effects and are the primary focus of this Letter.
Proton and nuclear charges.—The renormalized scalar,

axial, and tensor charges of the proton, deuteron, diproton,
and 3He are given in Table I (the bare charges are presented
in the Supplemental Material [50]). Results are given in the

basis of flavor matrices Λð3Þ ≡ diagð1;−1; 0Þ, Λð8Þ≡
diagð1; 1;−2Þ, and the identity Λð0Þ ≡ diagð1; 1; 1Þ, with
the charges labeled as gð3;8;0ÞX , respectively, where X ¼ S, A,
T indicates the Dirac structure. (For notational convenience,
a nonstandard normalization of the flavor matrices is used.
These are related to the Gell-Mann matrices λi as Λð3Þ ¼ λ3
and Λð8Þ ¼ ffiffiffi

3
p

λ8.) Since the calculations are performed in
the limit of SUð3Þf flavor symmetry, the disconnected

contributions cancel in both gð3ÞX and gð8ÞX . The disconnected
contributions (equivalently for the nonstrange hadrons
considered here, the strangeness contributions) are defined

by the difference gðdisc:ÞX ¼ gðsÞX ¼ ðgð0ÞX − gð8ÞX Þ=3. For con-
venience, these contributions are given separately in Table I.
The ratios of the charges in a nucleus A to those in the

proton, RðfÞ
X ðAÞ ¼ gðfÞX ðAÞ=gðfÞX ðpÞ, can be compared with

the NSN estimates, defined previously, which are deter-
mined entirely by the baryon number, isospin, and spin
quantum numbers. Most sources of systematic uncertainty
in these calculations, such as lattice spacing and finite
volume effects, cancel to a significant extent in these ratios

[66]. Figure 3 summarizes the differences ΔRðfÞ
X ðAÞ ¼

RðfÞ
X ðAÞ − RðfÞ

X ðAÞNSN, which highlight the effects of

FIG. 2. The strange-quark (disconnected) scalar matrix element

in 3He, gðsÞ3He;S
¼ h3Hejs̄sj3Hei. The left (right) panel shows results

obtained using the SS (SP) correlation functions for a range of
current insertion times τ and sink insertion times. The green band
corresponds to the extracted matrix element determined as
described in the text, and the blue (orange) curves and bands
illustrate a correlated two-state fit to the data shown as discussed
in the Supplemental Material [50].

TABLE I. The renormalized scalar, axial, and tensor charges of
the proton and light nuclei at a renormalization scale of μ ¼
2 GeV in the MS scheme, neglecting mixing with gluonic

operators. Specifically, for a nucleus A, gðiÞS ¼ hAjq̄ΛðiÞqjAi,
gðiÞA ¼ hAjq̄γ3γ5ΛðiÞqjAi, gðiÞT ¼ hAjq̄σ12ΛðiÞqjAi, with the flavor
structures ΛðiÞ defined in the text. Statistical uncertainties, the
systematic uncertainties arising from choices of fit procedure,
and the uncertainties of the renormalization constants have been
combined in quadrature.

p d pp 3He

gð0ÞS 3.65(7) 7.20(15) 7.22(15) 10.4(2)

gð3ÞS 0.78(2) 1.55(4) 0.77(2)

gð8ÞS 2.94(6) 5.84(12) 5.86(12) 8.55(18)

gðsÞS 0.234(8) 0.45(2) 0.45(2) 0.63(3)

gð0ÞA 0.634(9) 1.26(2) 0.63(1)

gð3ÞA 1.14(2) 1.13(2)

gð8ÞA 0.633(9) 1.25(2) 0.625(9)

gðsÞA 0.0002(6) 0.001(1) 0.003(2)

gð0ÞT 0.684(12) 1.36(2) 0.678(12)

gð3ÞT 1.12(2) 1.12(3)

gð8ÞT 0.684(12) 1.36(2) 0.676(12)

gðsÞT 0.0000 7(13) 0.0002(2) 0.0004(4)

PHYSICAL REVIEW LETTERS 120, 152002 (2018)

152002-3



nuclear interactions and correlations on the charges and
present a coherent picture of medium effects in light nuclei
at mπ ∼ 806 MeV—the central results of this Letter. Taken
as a whole, the results indicate that nuclear effects in the
charges are typically at the ≲2% level in light nuclei with
atomic number A ≤ 3. The exception to this picture is in the
scalar channel, where ∼10% effects are seen. For each type
of interaction, nuclear modifications scale approximately
with the magnitude of the corresponding charge. While
strange quark (equivalently, disconnected) contributions to
the nuclear axial and tensor charges are negligible, strange
quarks make significant contributions to the scalar charges,

as seen for matrix elements of the same operators in the
proton in previous studies [65,67,68].
The tensor charges encode the quark EDM contributions

to the EDMs of light nuclei and thus set bounds on BSM
sources of CP violation [10]. Given that the CP violation in
the weak interaction is insufficient to generate the observed
matter-antimatter asymmetry of the Universe (assuming
exact CPT invariance and baryon-antibaryon symmetry of
the initial conditions), many experiments have sought to
measure permanent EDMs as evidence for such sources.
Even with a successful measurement of a permanent EDM,
fully disentangling the sources of CP violation requires
multiple observables [7,69], and experiments searching for
EDMs of light nuclei are in the planning stages [70–72].
Nuclear effects in the tensor charge have not been pre-
viously observed; here they are resolved for the first time
and found to be at the few percent level for A ≤ 3 at these
quark masses. Similarly, modification of the axial charge in
nuclei is found to be at the 1%–2% level for both the
isoscalar and isovector combinations. The isovector 3He
charge is consistent with values extracted from measure-
ments of the β decay of tritium [73] and is more precise
than our previous work [46]. Nuclear effects in the axial
charges can test predictions that nuclear modification of the
spin-dependent structure function may be significantly
different than the modification of the spin-independent
structure function [74–76]. The small deviation resolved in
this study implies that quarks in nuclei carry a different
fraction of the total spin than quarks in free nucleons.
In contrast to the few percent nuclear effects seen in the

tensor and axial charges, the scalar charges of light nuclei are
suppressed at the 10% level relative to expectations for
noninteracting nucleons. (The sign of these nuclear effects is
consistent with the deeper binding of nuclei with increasing
quark masses that is found from direct calculations of the
binding energies of light nuclei [45].) In phenomenological
models of nuclei such as theWalecka model [77,78] and the
quark-meson coupling model [79], a mean scalar field in
which the nucleons move is an important contribution to the
saturation of nuclear matter. The large modifications of the
scalar charges found here suggest that models based on
similar mechanisms may approximately describe nuclei
even at unphysical values of the quark masses. A determi-
nation of the scalar polarizabilities through extensions of the
calculations presented here (using analogues of the methods
discussed in Refs. [48,49,80]) would be interesting in this
context [81,82].
The scalar charges of nuclei are also important in

the interpretation of experimental searches for dark matter
[26–31,33–39,41,42]. These charges quantify the contribu-
tion of explicit chiral symmetry breaking to nuclear masses
[83,84] and define nuclear σ terms. The σ terms govern the
interaction probabilities of many particle dark matter can-
didates with nuclei in direct detection experiments. The pion
and strange σ terms for a nucleusA are defined in analogy to

FIG. 3. The calculated values of ΔRðfÞ
X for the deuteron

(circles), diproton (diamonds), and 3He (squares) to those in
the proton. The panels display the results obtained for the scalar
(top), axial (middle), and tensor (bottom) interactions, and the
columns within the panels display results for the different flavor
structures of the currents, as indicated at the top of the figure. In
each case, the statistical and systematic uncertainties have been
combined in quadrature. The points exactly at zero are con-
strained to vanish by spin and/or isospin symmetry, while ratios
are not given for the strange quark axial and tensor charges, as
both the numerators and denominators are consistent with zero.
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the nucleon σ terms as σπA ¼ mlhAjūuþ d̄djAi and
σsA ¼ mshAjs̄sjAi, respectively (where ml denotes the
average light-quark mass). They can be determined from
the scalar charges calculated here and are tabulated in
Table II. The results for the light-quark σ terms are consistent
with, and more precise than, those deduced from numerical
lattice QCD calculations for these nuclei using a discretized
Feynman-Hellmann approach [84].
Summary.—The results of the lattice QCD calculations

presented here reveal percent-level nuclear effects in the
axial and tensor charges of light nuclei andOð10%Þ nuclear
effects in the scalar charges, at unphysical values of the
quark masses. This is consistent with nucleons being the
relevant effective degrees of freedom within these light
nuclei, dominating nuclear responses to external probes.
Future calculations using additional lattice spacings and
volumes, and with the physical values of the quark masses,
will determine the scalar, axial, and tensor matrix elements
of light nuclei with fully controlled uncertainties. These can
then be used to constrain EFT analyses of electroweak
interactions with light nuclei and of searches for BSM
physics. Specifically, the tensor charges of nuclei are
needed for the interpretation [7,69,85] of potential future
experimental searches for nuclear EDMs [70–72], and the
axial charges control Standard Model predictions for GT
transitions and double-β decay rates. The scalar charges
enter the interpretation of dark matter direct detection
experiments and searches for new physics in precision
spectroscopy. If the significant nuclear modifications to
scalar matrix elements observed in this Letter persist in
larger nuclei in nature, such effects will be important for the
interpretation of intensity-frontier searches for new physics
that employ nuclear targets.

We thank Silas Beane, Martin Hoferichter, Bob
McKeown, Assumpta Parreño, Yotam Soreq, Brian
Tiburzi, and Nodoka Yamanaka for helpful discussions
and comments. We would like to thank Jordy de Vries for
emphasizing to us that it may be possible to understand the
trends seen in these observables from the nature of the
nuclear forces at this pion mass. This research was
supported in part by the National Science Foundation

under Grant No. NSF PHY11-25915, and Z. D., W. D.,
M. J. S., P. E. S., and M. L.W. acknowledge the Kavli
Institute for Theoretical Physics for hospitality during
the development of this work. Calculations were performed
using computational resources provided by NERSC (sup-
ported by U.S. Department of Energy Award No. DE-
AC02-05CH11231) and by the USQCD Collaboration.
This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Award
No. DE-AC05-00OR22725. We acknowledge use of the
College of William and Mary computing facilities sup-
ported by NSF (MRI Grant No. PHY-1626177), the
Commonwealth of Virginia Equipment Trust Fund, and
the Office of Naval Research. The PRACE Research
Infrastructure resources at the Très Grand Centre de
Calcul and Barcelona Supercomputing Center were also
used. Parts of the calculations used the Chroma software
suite [86]. Z. D. was partly supported by the Maryland
Center for Fundamental Physics. W. D. was partly sup-
ported by U.S. Department of Energy Early Career
Research Award DE-SC0010495 and Grant No. DE-
SC0011090. A. G. is supported under the auspices of the
U.S. Department of Energy by LLNL under Contract
No. DE-AC52-07NA27344. K. O. was partially supported
by the U.S. Department of Energy through Award No. DE-
FG02-04ER41302 and by STFC consolidated Grant
No. ST/P000681/1. K. O., P. E. S., and F. W. were partially
supported through Contract No. DE-AC05-06OR23177
under which JSA operates the Thomas Jefferson
National Accelerator Facility. M. J. S. was supported by
DOE Award No. DE-FG02-00ER41132, in part by the
USQCD SciDAC project, and by the U.S. Department of
Energy through Award No. DE-SC00-10337. M. L. W. was
supported by a MIT Pappalardo Fellowship and in part
by DOE Award No. DE-SC0011090. F. W. was partially
supported through the USQCD Scientific Discovery
through Advanced Computing (SciDAC) project funded
by the U.S. Department of Energy, Office of Science,
Offices of Advanced Scientific Computing Research,
Nuclear Physics, and High Energy Physics.

[1] J. Ashman et al. (European Muon Collaboration), Phys.
Lett. B 206, 364 (1988).

[2] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997).
[3] R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990).
[4] T. Marrodn Undagoitia and L. Rauch, J. Phys. G 43, 013001

(2016).
[5] C. Delaunay, R. Ozeri, G. Perez, and Y. Soreq, Phys. Rev. D

96, 093001 (2017).
[6] C. Delaunay, C. Frugiuele, E. Fuchs, and Y. Soreq, Phys.

Rev. D 96, 115002 (2017).
[7] J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog.

Part. Nucl. Phys. 71, 21 (2013).

TABLE II. The σ terms of the proton and nuclei at the quark
masses used in this Letter. σB;πA and σB;sA denote the differences
between the sigma terms of nuclei and A times the sigma term of
the proton [84]. Here ms ¼ 96 MeV has been used, consistent
with the physical strange quark mass.

p d pp 3He

σπA (MeV) 327(5) 648(10) 649(10) 942(16)
σsA (MeV) 22.5(8) 43.4(19) 43.5(18) 60.7(29)
σB;πA (MeV) −7ð14Þ −6ð15Þ −40ð22Þ
σB;sA (MeV) −1.5ð2.4Þ −1.4ð2.4Þ −6.7ð3.7Þ

PHYSICAL REVIEW LETTERS 120, 152002 (2018)

152002-5

https://doi.org/10.1016/0370-2693(88)91523-7
https://doi.org/10.1016/0370-2693(88)91523-7
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1016/0550-3213(90)90506-9
https://doi.org/10.1088/0954-3899/43/1/013001
https://doi.org/10.1088/0954-3899/43/1/013001
https://doi.org/10.1103/PhysRevD.96.093001
https://doi.org/10.1103/PhysRevD.96.093001
https://doi.org/10.1103/PhysRevD.96.115002
https://doi.org/10.1103/PhysRevD.96.115002
https://doi.org/10.1016/j.ppnp.2013.03.003
https://doi.org/10.1016/j.ppnp.2013.03.003


[8] N. Yamanaka, Int. J. Mod. Phys. E 26, 1730002 (2017).
[9] N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi,

and B. P. Das, Eur. Phys. J. A 53, 54 (2017).
[10] T. Chupp, P. Fierlinger, M. Ramsey-Musolf, and J. Singh,

arXiv:1710.02504.
[11] B. Buck and S. M. Perez, Phys. Rev. Lett. 50, 1975 (1983).
[12] D. Krofcheck, E. Sugarbaker, J. Rapaport, D. Wang, R.

Byrd, C. Foster, C. Goodman, I. V. Heerden, T. Taddeucci,
J. N. Bahcall et al., Phys. Rev. Lett. 55, 1051 (1985).

[13] W.-T. Chou, E. K. Warburton, and B. A. Brown, Phys. Rev.
C 47, 163 (1993).

[14] B. A. Brown, W. Chung, and B. H. Wildenthal, Phys. Rev.
Lett. 40, 1631 (1978).

[15] B. H. Wildenthal, M. S. Curtin, and B. A. Brown, Phys. Rev.
C 28, 1343 (1983).

[16] G. Martinez-Pinedo, A. Poves, E. Caurier, and A. P. Zuker,
Phys. Rev. C 53, R2602 (1996).

[17] V. Kumar, P. C. Srivastava, and H. Li, J. Phys. G 43, 105104
(2016).

[18] F. F. Deppisch and J. Suhonen, Phys. Rev. C 94, 055501
(2016).

[19] R. Schiavilla et al., Phys. Rev. C 58, 1263 (1998).
[20] H. Krebs, E. Epelbaum, and U. G. Meiner, Ann. Phys.

(Amsterdam) 378, 317 (2017).
[21] A. Baroni, L. Girlanda, A. Kievsky, L. E. Marcucci, R.

Schiavilla, and M. Viviani, Phys. Rev. C 94, 024003 (2016);
Phys. Rev. C 95, 059902(E) (2017).

[22] H. De-Leon, L. Platter, and D. Gazit, arXiv:1611.10004.
[23] S. Pastore, A. Baroni, J. Carlson, S. Gandolfi, S. C. Pieper,

R. Schiavilla, and R. B. Wiringa, Phys. Rev. C 97, 022501
(2018).

[24] T. Shafer, J. Engel, C. Fröhlich, G. C. McLaughlin, M.
Mumpower, and R. Surman, Phys. Rev. C 94, 055802
(2016).

[25] E. A. C. Prez, J. Menndez, and A. Schwenk, arXiv:1708
.06140.

[26] J. Engel, S. Pittel, and P. Vogel, Int. J. Mod. Phys. E 01, 1
(1992).

[27] G. Prezeau, A. Kurylov, M. Kamionkowski, and P. Vogel,
Phys. Rev. Lett. 91, 231301 (2003).

[28] J. Ellis, K. A. Olive, and C. Savage, Phys. Rev. D 77,
065026 (2008).

[29] J. Ellis, K. A. Olive, and P. Sandick, New J. Phys. 11,
105015 (2009).

[30] J. Giedt, A. W. Thomas, and R. D. Young, Phys. Rev. Lett.
103, 201802 (2009).

[31] R. J. Hill and M. P. Solon, Phys. Lett. B 707, 539 (2012).
[32] J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev. Lett.

107, 062501 (2011).
[33] J. Ellis and K. A. Olive, Eur. Phys. J. C 72, 2005 (2012).
[34] S. J. Underwood, J. Giedt, A. W. Thomas, and R. D. Young,

Phys. Rev. D 86, 035009 (2012).
[35] C. Korber, A. Nogga, and J. de Vries, Phys. Rev. C 96,

035805 (2017).
[36] V. Cirigliano, M. L. Graesser, and G. Ovanesyan, J. High

Energy Phys. 10 (2012) 025.
[37] A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y.

Xu, J. Cosmol. Astropart. Phys. 02 (2013) 004.
[38] P. Klos, J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev.

D 88, 083516 (2013); Phys. Rev. D 89, 029901(E) (2014).

[39] M. Hoferichter, P. Klos, and A. Schwenk, Phys. Lett. B 746,
410 (2015).

[40] M. Hoferichter, P. Klos, J. Menendez, and A. Schwenk,
Phys. Rev. D 94, 063505 (2016).

[41] F. Bishara, J. Brod, B. Grinstein, and J. Zupan, J. Cosmol.
Astropart. Phys. 02 (2017) 009.

[42] M. Hoferichter, P. Klos, J. Menendez, and A. Schwenk,
Phys. Rev. Lett. 119, 181803 (2017).

[43] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572
(1985).

[44] M. Lüscher and P. Weisz, Commun. Math. Phys. 97, 59
(1985).

[45] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W.
Lin, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, and A.
Walker-Loud (NPLQCD Collaboration), Phys. Rev. D 87,
034506 (2013).

[46] M. J. Savage, P. E. Shanahan, B. C. Tiburzi, M. L. Wagman,
F. Winter, S. R. Beane, E. Chang, Z. Davoudi, W. Detmold,
and K. Orginos, Phys. Rev. Lett. 119, 062002 (2017).

[47] C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, and A.
Walker-Loud, Phys. Rev. D 96, 014504 (2017).

[48] B. C. Tiburzi, M. L. Wagman, F. Winter, E. Chang,
Z. Davoudi, W. Detmold, K. Orginos, M. J. Savage, and
P. E. Shanahan, Phys. Rev. D 96, 054505 (2017).

[49] P. E. Shanahan, B. C. Tiburzi, M. L. Wagman, F. Winter, E.
Chang, Z. Davoudi, W. Detmold, K. Orginos, and M. J.
Savage, Phys. Rev. Lett. 119, 062003 (2017).

[50] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.152002 for techni-
cal details of the LQCD computation and numerical
analysis, as well as the effective ratio plots that obtain all
the charges along with their bare values.

[51] K. Orginos, A. Parreno, M. J. Savage, S. R. Beane, E.
Chang, and W. Detmold, Phys. Rev. D 92, 114512 (2015).

[52] M. L. Wagman, F. Winter, E. Chang, Z. Davoudi, W.
Detmold, K. Orginos, M. J. Savage, and P. E. Shanahan,
Phys. Rev. D 96, 114510 (2017).

[53] S. R. Beane et al., arXiv:1705.09239.
[54] M. F. Hutchinson, J. Commun. Stat. Simul. 19, 433 (1990).
[55] S.-J. Dong and K.-F. Liu, Phys. Lett. B 328, 130 (1994).
[56] H. Neff, N. Eicker, T. Lippert, J. W. Negele, and K.

Schilling, Phys. Rev. D 64, 114509 (2001).
[57] J. Foley, K. J. Juge, A. O’Cais, M. Peardon, S. Ryan, and

J.-I. Skullerud, Comput. Phys. Commun. 172, 145 (2005).
[58] R. Babich, R. Brower, M. Clark, G. Fleming, J. Osborn, and

C. Rebbi, Proc. Sci., LATTICE2007 (2007) 139 [arXiv:
0710.5536].

[59] A. Stathopoulos, J. Laeuchli, and K. Orginos, arXiv:
1302.4018.

[60] A. S. Gambhir, A. Stathopoulos, and K. Orginos, SIAM J.
Sci. Comput. 39, A532 (2017).

[61] A. S. Gambhir, A. Stathopoulos, K. Orginos, B. Yoon,
R. Gupta, and S. Syritsyn, Proc. Sci., LATTICE2016
(2016) 265 [arXiv:1611.01193].

[62] Arjun Gambhir, Ph.D. Thesis, College of William and Mary,
2017.

[63] B. Yoon et al., Phys. Rev. D 95, 074508 (2017).
[64] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou,

K. Jansen, H. Panagopoulos, and C. Wiese, Phys. Rev. D
96, 054503 (2017).

PHYSICAL REVIEW LETTERS 120, 152002 (2018)

152002-6

https://doi.org/10.1142/S0218301317300028
https://doi.org/10.1140/epja/i2017-12237-2
http://arXiv.org/abs/1710.02504
https://doi.org/10.1103/PhysRevLett.50.1975
https://doi.org/10.1103/PhysRevLett.55.1051
https://doi.org/10.1103/PhysRevC.47.163
https://doi.org/10.1103/PhysRevC.47.163
https://doi.org/10.1103/PhysRevLett.40.1631
https://doi.org/10.1103/PhysRevLett.40.1631
https://doi.org/10.1103/PhysRevC.28.1343
https://doi.org/10.1103/PhysRevC.28.1343
https://doi.org/10.1103/PhysRevC.53.R2602
https://doi.org/10.1088/0954-3899/43/10/105104
https://doi.org/10.1088/0954-3899/43/10/105104
https://doi.org/10.1103/PhysRevC.94.055501
https://doi.org/10.1103/PhysRevC.94.055501
https://doi.org/10.1103/PhysRevC.58.1263
https://doi.org/10.1016/j.aop.2017.01.021
https://doi.org/10.1016/j.aop.2017.01.021
https://doi.org/10.1103/PhysRevC.94.024003
https://doi.org/10.1103/PhysRevC.95.059902
http://arXiv.org/abs/1611.10004
https://doi.org/10.1103/PhysRevC.97.022501
https://doi.org/10.1103/PhysRevC.97.022501
https://doi.org/10.1103/PhysRevC.94.055802
https://doi.org/10.1103/PhysRevC.94.055802
http://arXiv.org/abs/1708.06140
http://arXiv.org/abs/1708.06140
https://doi.org/10.1142/S0218301392000023
https://doi.org/10.1142/S0218301392000023
https://doi.org/10.1103/PhysRevLett.91.231301
https://doi.org/10.1103/PhysRevD.77.065026
https://doi.org/10.1103/PhysRevD.77.065026
https://doi.org/10.1088/1367-2630/11/10/105015
https://doi.org/10.1088/1367-2630/11/10/105015
https://doi.org/10.1103/PhysRevLett.103.201802
https://doi.org/10.1103/PhysRevLett.103.201802
https://doi.org/10.1016/j.physletb.2012.01.013
https://doi.org/10.1103/PhysRevLett.107.062501
https://doi.org/10.1103/PhysRevLett.107.062501
https://doi.org/10.1140/epjc/s10052-012-2005-2
https://doi.org/10.1103/PhysRevD.86.035009
https://doi.org/10.1103/PhysRevC.96.035805
https://doi.org/10.1103/PhysRevC.96.035805
https://doi.org/10.1007/JHEP10(2012)025
https://doi.org/10.1007/JHEP10(2012)025
https://doi.org/10.1088/1475-7516/2013/02/004
https://doi.org/10.1103/PhysRevD.88.083516
https://doi.org/10.1103/PhysRevD.88.083516
https://doi.org/10.1103/PhysRevD.89.029901
https://doi.org/10.1016/j.physletb.2015.05.041
https://doi.org/10.1016/j.physletb.2015.05.041
https://doi.org/10.1103/PhysRevD.94.063505
https://doi.org/10.1088/1475-7516/2017/02/009
https://doi.org/10.1088/1475-7516/2017/02/009
https://doi.org/10.1103/PhysRevLett.119.181803
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1007/BF01206178
https://doi.org/10.1007/BF01206178
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevLett.119.062002
https://doi.org/10.1103/PhysRevD.96.014504
https://doi.org/10.1103/PhysRevD.96.054505
https://doi.org/10.1103/PhysRevLett.119.062003
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.152002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.152002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.152002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.152002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.152002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.152002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.152002
https://doi.org/10.1103/PhysRevD.92.114512
https://doi.org/10.1103/PhysRevD.96.114510
http://arXiv.org/abs/1705.09239
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1016/0370-2693(94)90440-5
https://doi.org/10.1103/PhysRevD.64.114509
https://doi.org/10.1016/j.cpc.2005.06.008
http://arXiv.org/abs/0710.5536
http://arXiv.org/abs/0710.5536
http://arXiv.org/abs/1302.4018
http://arXiv.org/abs/1302.4018
https://doi.org/10.1137/16M1066361
https://doi.org/10.1137/16M1066361
http://arXiv.org/abs/1611.01193
https://doi.org/10.1103/PhysRevD.95.074508
https://doi.org/10.1103/PhysRevD.96.054503
https://doi.org/10.1103/PhysRevD.96.054503


[65] C. Alexandrou et al., Phys. Rev. D 95, 114514 (2017); Phys.
Rev. D 96, 099906(E) (2017).

[66] F. Winter, W. Detmold, A. S. Gambhir, K. Orginos, M. J.
Savage, P. E. Shanahan, and M. L. Wagman, Phys. Rev. D
96, 094512 (2017).

[67] J. Green, S. Meinel, M. Engelhardt, S. Krieg, J. Laeuchli,
J. Negele, K. Orginos, A. Pochinsky, and S. Syritsyn, Phys.
Rev. D 92, 031501 (2015).

[68] T. Bhattacharya, V. Cirigliano, S. D. Cohen, R. Gupta, A.
Joseph, H.-W. Lin, and B. Yoon (PNDME Collaboration),
Phys. Rev. D 92, 094511 (2015).

[69] E. Mereghetti and U. van Kolck, Annu. Rev. Nucl. Part. Sci.
65, 215 (2015).

[70] Y. K. Semertzidis et al. (EDM Collaboration), AIP Conf.
Proc. 698, 200 (2004).

[71] Y. K. Semertzidis (Storage Ring EDM Collaboration), in
Particles and Fields. Proceedings, Meeting of the Division
of the American Physical Society, DPF 2011, Providence,
RI, 2011, https://inspirehep.net/record/940136/files/arXiv:
1110.3378.pdf (unpublished).

[72] J. Pretz (JEDI Collaboration), Hyperfine Interact. 214, 111
(2013).

[73] J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501
(2015).

[74] J.-W. Chen and W. Detmold, Phys. Lett. B 625, 165
(2005).

[75] I. C. Cloet, W. Bentz, and A.W. Thomas, Phys. Rev. Lett.
95, 052302 (2005).

[76] J. R. Smith and G. A. Miller, Phys. Rev. C 72, 022203
(2005).

[77] J. D. Walecka, Ann. Phys. (N.Y.) 83, 491 (1974).
[78] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1

(1986).
[79] K. Saito and A.W. Thomas, Phys. Lett. B 327, 9

(1994).
[80] E. Chang, W. Detmold, K. Orginos, A. Parreño, M. J.

Savage, B. C. Tiburzi, and S. R. Beane (NPLQCD Collabo-
ration), Phys. Rev. D 92, 114502 (2015).

[81] P. A. M. Guichon, Phys. Lett. B 200, 235 (1988).
[82] J. R. Stone, P. A. M. Guichon, P. G. Reinhard, and A.W.

Thomas, Phys. Rev. Lett. 116, 092501 (2016).
[83] M. C. Birse, J. Phys. G 20, 1537 (1994).
[84] S. R. Beane, S. D. Cohen, W. Detmold, H. W. Lin, and M. J.

Savage, Phys. Rev. D 89, 074505 (2014).
[85] A. Wirzba, J. Bsaisou, and A. Nogga, Int. J. Mod. Phys. E

26, 1740031 (2017).
[86] R. G. Edwards and B. Joo (SciDAC Collaboration), Nucl.

Phys. B, Proc. Suppl. 140, 832 (2005).

PHYSICAL REVIEW LETTERS 120, 152002 (2018)

152002-7

https://doi.org/10.1103/PhysRevD.95.114514
https://doi.org/10.1103/PhysRevD.96.099906
https://doi.org/10.1103/PhysRevD.96.099906
https://doi.org/10.1103/PhysRevD.96.094512
https://doi.org/10.1103/PhysRevD.96.094512
https://doi.org/10.1103/PhysRevD.92.031501
https://doi.org/10.1103/PhysRevD.92.031501
https://doi.org/10.1103/PhysRevD.92.094511
https://doi.org/10.1146/annurev-nucl-102014-022344
https://doi.org/10.1146/annurev-nucl-102014-022344
https://doi.org/10.1063/1.1664226
https://doi.org/10.1063/1.1664226
https://inspirehep.net/record/940136/files/arXiv:1110.3378.pdf
https://inspirehep.net/record/940136/files/arXiv:1110.3378.pdf
https://inspirehep.net/record/940136/files/arXiv:1110.3378.pdf
https://inspirehep.net/record/940136/files/arXiv:1110.3378.pdf
https://inspirehep.net/record/940136/files/arXiv:1110.3378.pdf
https://doi.org/10.1007/s10751-013-0799-4
https://doi.org/10.1007/s10751-013-0799-4
https://doi.org/10.1103/PhysRevC.91.025501
https://doi.org/10.1103/PhysRevC.91.025501
https://doi.org/10.1016/j.physletb.2005.08.041
https://doi.org/10.1016/j.physletb.2005.08.041
https://doi.org/10.1103/PhysRevLett.95.052302
https://doi.org/10.1103/PhysRevLett.95.052302
https://doi.org/10.1103/PhysRevC.72.022203
https://doi.org/10.1103/PhysRevC.72.022203
https://doi.org/10.1016/0003-4916(74)90208-5
https://doi.org/10.1016/0370-2693(94)91520-2
https://doi.org/10.1016/0370-2693(94)91520-2
https://doi.org/10.1103/PhysRevD.92.114502
https://doi.org/10.1016/0370-2693(88)90762-9
https://doi.org/10.1103/PhysRevLett.116.092501
https://doi.org/10.1088/0954-3899/20/10/003
https://doi.org/10.1103/PhysRevD.89.074505
https://doi.org/10.1142/S0218301317400316
https://doi.org/10.1142/S0218301317400316
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254

