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We explore adiabatic pumping in the presence of a periodic drive, finding a new phase in which the
topologically quantized pumped quantity is energy rather than charge. The topological invariant is given by
the winding number of the micromotion with respect to time within each cycle, momentum, and adiabatic
tuning parameter. We show numerically that this pump is highly robust against both disorder and
interactions, breaking down at large values of either in a manner identical to the Thouless charge pump.
Finally, we suggest experimental protocols for measuring this phenomenon.
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The Thouless charge pump serves as a simple yet
fundamental example of topology in quantum systems [1].
The hallmark of this effect is the transport of a precisely
quantized amount of charge during an adiabatic cycle in
parameter space. This remarkable phenomenon has been
demonstrated experimentally in various physical systems
such as few-body semiconductor quantum dots [2–5] and
more recently in one-dimensional chains of ultra-cold atoms
trapped in an optical lattice [6–8].
Recently, the classification of topological phases ofmatter

has been extended to periodically driven (Floquet) systems
far from equilibrium [9–13]. In particular, periodic driving
can lead to new topological phases that have no analogy in
undriven systems [14–28], an idea that has been confirmed
experimentally [29,30]. A natural question to ask is whether
these far-from equilibrium systems can also exhibit new
topological pumping effects.
In this Letter, we answer this question in the affirmative

by explicitly constructing a generalized adiabatic pump
in a Floquet system. We find a novel phase in which
energy, rather than charge, undergoes quantized pumping.
Specifically, upon adiabatic cycling of a particular param-
eter, partially filled systems in this phase transport energy
from one side of the filled region to the other, as illustrated
in Fig. 1. The energy transported per cycle is quantized in
units of the drive frequency ℏΩ.
Using numerical and analytical arguments, we show that

this phenomenon is stabilized by disorder and, via many-
body localization, remains robust in the presence of
interactions. In this way, we demonstrate the existence
of a stable topological pump that can only be realized in the
presence of periodic driving.
Model.—Let us begin by introducing a simple model

that exhibits topological energy pumping, which we will
later demonstrate is topologically robust to perturbations.

The model consists of a five-step driving protocol, with
Hamiltonians Hj ¼ hj þ H:c:, where

h1 ¼ −J
XL=2
x¼1

c†A;xcB;x; h2 ¼ −J
XL=2
x¼1

eiλc†B;xcA;xþ1;

h3 ¼ −J
XL=2
x¼1

c†B;xcA;xþ1; h4 ¼ −J
XL=2
x¼1

eiλc†A;xcB;x;

h5 ¼
Δ
2

XL=2
x¼1

ðc†A;xcA;x − c†B;xcB;xÞ ð1Þ

acting on L sites with open boundary conditions. The
protocol is chosen to be time periodic with HðtÞ¼HðtþTÞ
such that Hð0<t<T=5Þ¼H1, HðT=5 < t < 2T=5Þ ¼ H2,
etc. This model is particularly simple if the tunneling
strengthJ takes thevalue Jtuned ≡ 5ℏΩ=4, whereΩ ¼ 2π=T.
At this fine-tuned point, the fermions hop exactly one site at
each step, such that a fermion initialized at any site returns to
the same site after one driving cycle, as illustrated inFig. 2(a).
Using the Floquet formalism, we write the single-particle

time evolution U in the form UðtÞ ¼ PðtÞe−iHFt, where
the micromotion PðtÞ ¼ Pðtþ TÞ describes the dynamics
within each cycle and HF is the effective Hamiltonian that

FIG. 1. Illustration of the topological energy pump. Upon
ramping the pump adiabatically around a cycle, the filled region
of length l ≫ 1 remains localized, but nevertheless quantized
work is performed at the edges of the filled region in quanta of the
drive energy ℏΩ.
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describes stroboscopic behavior at multiples of the period T
[31]. For J ¼ Jtuned, the Floquet eigenstates are localized
states jx; αi≡ c†α;xjvaci. The eigenvalues of HF, known as
quasienergies, are only well defined modulo ℏΩ. For a
particle initially located on a site in the bulk, the phase eiλ

acquired during step 2 is cancelled by the phase e−iλ during
step 4, yielding flat quasienergy bands at ϵFbulk ¼ �Δ=5.
However, a particle initially located at site j1; Bi or jL; Ai is
unable to hop during steps 2 and 3, causing it to pick up a
λ-dependent phase during the driving cycle, which trans-
lates into a λ dependence of these edge state quasienergies
[Fig. 2(b)]. While the bulk bands are trivial and can be
shown to have vanishing Chern number with respect to λ
and quasimomentum k [32], the edge states (red and blue)
clearly exhibit topologically nontrivial winding. The ques-
tion, then, is how to characterize and measure the topo-
logical properties of this model.
Topology and measurement.—The main insight for

understanding our model comes from noting that the band
structure in Fig. 2(b) is identical to that found in the two-
dimensional anomalous Floquet insulator (cf. Fig. 1 in
Ref. [11]) with the pump parameter λ playing the role of
momentum ky. In this way, our model is a dimensionally
reduced version of the anomalous Floquet insulator [11,17],
in the same way that the Thouless pump may be thought of
as the dimensional reduction of a Chern insulator. This
immediately implies the existence of a topological invariant
characterizing our pump, namely, the winding number of
the micromotion,

ν ¼ 1

8π2

Z
dtdλdkTrð½P†∂λP;P†∂tP�P†∂kPÞ; ð2Þ

defined on the compact three-dimensional parameter
space (t, λ, k). While the micromotion and thus the winding
number in principle depend on the branch cut defining
HF, the fact that Chern numbers of the bulk bands vanish
implies that thewinding number is independent of this choice
[11]. In particular, the winding number for a branch cut at
quasienergy ϵcut in some gap gives precisely the number
of edge states crossing that gap. For the model we consider
here, ν ¼ 1.
One hint for the observable consequences of this

topological index comes from examining the quasienergy
spectrum in the presence of open boundary conditions
[Fig. 2(b)]. Upon adiabatically ramping λ from 0 to 2π, the
bulk remains unchanged while the left (right) edge state
wraps around the Floquet Brillouin zone, absorbing (emit-
ting) a quantum of energy. Upon completing the cycle, the
system returns to its initial electronic state. Therefore, the
nontrivial topology does not lead to any direct pumping of
the fermions. Instead, as we will show, ramping λ performs
quantized work on the external driving fields.
Specifically, we now show that the quantized observable

is the λ-averaged “force polarization” PF ≡P
xxρ

F
x , where

ρFx ¼ 1

2

��X
α

c†α;xcα;x; ∂λH

��
ð3Þ

is the local generalized force required to change λ by a
small amount. Here, curly braces denote the anticommu-
tator, α ¼ fA;Bg sums over sublattices, and the expect-
ation value is taken with respect to an arbitrary quantum
state [33]. Changing λ by a finite amount thus requires a
local work

ρWx ¼
Z

ρFx ½λðtÞ; t�_λðtÞdt:

While the above expressions hold for arbitrary nonequili-
brium situations, the work becomes independent of speed
in the limit of slow ramps, for which the wave function is
given by (Floquet) adiabatic transport. Thus, a finite work
polarization PW ¼ R

PFdλ ¼
P

xxρ
W
x implies that work is

done on one half of the system and done by the other half.
We will see that quantization of PW thus implies that this
differential work is quantized, as illustrated in Fig. 1.
Quantization of PW follows immediately from dimen-

sionally reducing the anomalous Floquet insulator, as the
topologically quantized magnetization [34] immediately
reduces to PW . In practice, the work polarization may be
directly measured by filling part of the system and
measuring the time-dependence local force ρFx near the
edges of the filled region, as illustrated in Fig. 1. Within the
fully filled or fully empty regions nothing is able to move;
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FIG. 2. (a) Illustration of the anomalous Floquet pump
[Eq. (1)], which involves five steps of period T=5 with fined-
tuned hopping Jtuned ¼ 5ℏΩ=4. Red and black arrows trace the
positions of edge and bulk states, respectively. (b) Quasienergy
spectrum as a function of the tuning parameter λ shows the bulk
bands (black), left edge state (red), and right edge state (blue).
(c) Illustration of response measured in numerics, for which only
the left half of the system is filled. (d) Numerical results for the
local work and charge density for the model in Eq. (1) averaged
over a single ramp from λ ¼ 0 to 2π with L ¼ 20, Nc ¼ 12, and
Nλ ¼ 1. Data for ρWx are in units of ℏΩ.
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hence, no work is done: ρWx ¼ 0. Furthermore, as the net
work on the entire system vanishes, the work done near the
left edge of the filled region, WL, must exactly cancel that
done near the right edge: WR ¼ −WL. For a filled region
of length l lattice sites, which is much larger than the
localization length ξ, the total work polarization is then given
by Ptot

W ≈ ðWR −WLÞl=2. As the average work polarization
per filled unit cell is quantized to be P̄W ¼ νℏΩ, we also have
Ptot
W ¼ νℏΩl. Equating these expressions, we find that

WR ¼ −WL ¼ νℏΩ: ð4Þ
Further details on this derivation may be found in the
Supplemental Material [35].
To confirm these predictions, we consider a slightly

different setup in which we fill only the left half of the
system, i.e., sites 1 through L=2. Then, the only contribu-
tion to the force comes from the density step at L=2, such
that the entire system absorbs or emits an integer number
of photon quanta. Figure 2(c) illustrates how this emerges
from adding the quantized polarization in each localized
state. Numerically, we start from this initial state and ramp λ
from 0 to 2πNλ at a constant rate _λ ¼ 2π=ðNcTÞ. While
slow time dependence of λ formally breaks the T perio-
dicity, it has been shown than an appropriate extension of
adiabaticity may be defined [36–38], which is nevertheless
subtle due to the presence of resonances that must be
crossed diabatically. In practice, we find that an appropriate
adiabatic limit is reached for Nc ≫ 1 and ramping over
many adiabatic cycles (Nλ ≫ 1) to remove initial transients
[39]. We then expect the total energy absorbed by the
system,

Eabs ≡
Z

h∂λHi_λdt; ð5Þ

to be quantized in units of ℏΩ. In the Supplemental
Material [35] we show this analytically for our simple
model, and we verify this numerically in Fig. 2(d).
Disorder and interactions.—Having determined the basic

properties of our topological energy pump in an analytically
tractable limit, we now demonstrate its robustness to disorder
and interactions. One might naively expect this robustness
to be trivial, as topological states are often argued to be
protected against weak perturbations. However, in the
presence of disorder, the ability to adiabatically track a
given localized eigenstate is known to be ill defined, as the
eigenstate will undergo weakly avoided crossings on arbi-
trary length scales [40]. We will address this issue analyti-
cally in a follow-up work [41], but for now we provide
numerical support regarding its stability.
Specifically, we add static chemical potential disorder to

our Floquet system,

Hdis ¼
X
α;x

wα;xc
†
α;xcα;x; ð6Þ

where the disorder is drawn from a box distribution
wα;x=Ω ∈ ½−W;W�. We also consider deviating from the
fine-tuned limit by a “detuning” α [42]. such that

Δ ¼ αΩ; J ¼ Jtunedð1 − αÞ: ð7Þ
We then carry out the same procedure as in Fig. 2(c) to
measure topological energy absorption.
The disorder-averaged phase diagram for a wide range of

disorder strengths and detunings is shown in Fig. 3(a).
There is clearly a wide region with well-quantized energy
pumping (red), up to disorder strengths and detuning of
order ℏΩ. In fact, for the majority of the phase diagram,
disorder is actually necessary to see quantization of the
energy transport. The simplest reason for this is that, in the
absence of disorder, any generic model will not be localized
and our measurement of Eabs at the localized density edge
is not meaningful. This is seen in our phase diagram for
α ≠ 0, where a small amount of disorder clearly improves
the quantization for the system size shown. Furthermore,
we will show in a follow-up work [41] that even the
appropriately defined clean limit of PW has a nontopo-
logical contribution that is suppressed by localization. In
either case, the phase diagram clearly shows a large, nearly
quantized plateau at weak disorder below the topological
transition at α ¼ 1=2. For instance, the data in Fig. 3(b) are
quantized to within 0.4% and 0.8% at W ¼ 1 and 3=2,
respectively, for L ¼ 150, Nc ¼ Nλ ¼ 40. We also note
that the quantized work polarization is robust to choice of
initial conditions, as demonstrated numerically in the
Supplemental Material [35].
At large disorder strengths, we expect a topological

transition to a trivial state while maintaining Anderson
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FIG. 3. (a) Phase diagram of energy pump as a function of
disorder W and detuning α [see Eq. (7)] at fixed L ¼ 100 and
Nc ¼ Nλ ¼ 25. In the absence of disorder a phase transition
occurs at α ¼ 1=2. In the presence of disorder, the topological
plateau appears stable over a wide region. Note that some data,
particularly at small W, are not fully converged to the L, Nc,
Nλ → ∞ limit due to large localization length. We analyze this
limit further in the Supplemental Material [35]. (b) Cut at fixed
α ¼ 0.2 showing a slow crossover to the topologically trivial
phase which is independent of L, Nc, and Nλ. (c) Histogram over
disorder configurations of Eabs at three points along the crossover
showing the breakdown of topological quantization.
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localization throughout [43]. Surprisingly, we instead find a
slow crossover for which energy is still pumped, but not
quantized. This is unlike the sharp transition found in the
anomalous Floquet Anderson insulator [17], and illustrates
a fundamental difference regarding the role of disorder
in one-dimensional pumps compared to their higher-
dimensional counterparts. For the energy pump, one of
the tuning parameters, λ, couples strongly to the quasiener-
gies, even when the system is localized. For the anomalous
Floquet Anderson insulator, the winding number is defined
as in Eq. (2) with angles θx and θy defining twisted boundary
conditions in place of the parameters λ and k. For that model,
the localization of Floquet eigenstates implies that the change
of quasienergy due to either twist angle is exponentially
suppressed. In contrast, the “dimensional extension” of the
energy pump features Floquet states that are delocalized in
the y direction. Hence, the quasienergy spectrum is sensitive
to changes of θy, i.e., λ.
The breakdown of topological energy pumping may be

traced to this increased sensitivity to λ. As the disorder
strength W is increased, the L individual quasienergy
minibands εnðθx; λÞ may undergo topological gap closings
and reopenings, potentially introducing nontrivial Chern
numbers. This yields a Floquet branch cut dependence of
the winding number νðϵFgapÞ [11], where in the disordered
case the winding number is defined as in Eq. (2) with θx in
place of kx. As our measurement populates quasienergy
states at random (the “infinite temperature” ensemble), we
stochastically sample over these winding numbers. Thus,
the nonquantized energy pump may be thought of as an
average of the topological winding number over both gaps
and disorder realizations [41].
This argument is consistent with the histogram of Eabs in

this crossover region [Fig. 3(c)], which shows broadening
from a perfectly quantized δ-function peak at Eabs ¼ ℏΩ
towards a statistical ensemble that will eventually be
nontopological (Ēabs ¼ 0). Importantly, this breakdown
by a proliferation of Berry monopoles is precisely the
mechanism that leads to the loss of charge pump quantiza-
tion in disordered systems [47,48]. Thus, the crossover
behavior in our system likely falls into the same class as
this undriven case.
Many-body localization.—Finally, let us see that our

results hold in the presence of many-body localization. We
test this by adding nearest neighbor interactions

Hint ¼ U
X
j

�
nj −

1

2

��
njþ1 −

1

2

�
ð8Þ

throughout the cycle and simulate the dynamics via exact
diagonalization [49]. In Fig. 4(a), we map out the phase
diagram as a function of interaction and disorder strengths.
The data confirm that the energy absorption remains beauti-
fully quantized in the topological phase [Fig. 4(b)]. We note
that, in the absence of disorder, the system is expected to heat

to infinite temperature, and thus approach Eabs ¼ 0 for
Nλ → ∞. The remarkable quantization we see is likely a
prethermal phenomenon. Interestingly, the data indicate that
weak interactions also stabilize the topological phase. While
this may be due to a trivial microscopic effect such as the
shortening of the localization length due to interactions, it
leaves open the tantalizing possibility that interactions
stabilize the phase and lead to an energy pump that is again
topologically protected.
Experiments.—The topological energy pump is directly

amenable to being realized experimentally, requiring hop-
ping models in one dimension similar to those recently
realized in optical lattice charge pumps [6–8]. Instead of
measuring local charge, these experiments would simply
have to measure local force ρFx . This should be readily
realized by combining adiabatic pump protocols with sys-
tems that enable site-resolved measurement, such as optical
lattice microscopes [50,51], trapped ion arrays [52], and
other engineered platforms [53–55], where ρFx is simply the
measurable local current operator during steps 2 and 4 [56].
In addition to the pulsedmultistep protocols discussed in this
work, which are quite natural in such engineered systems,
we will show elsewhere that the topological pumping may
also occur in monochromatically driven models, such as a
driven version of the Rice-Mele model [41,57]. This opens
the intriguing possibility to directly measure the backaction
on the drive lasers. For instance, if the periodic driving is
realized by a pair of Raman lasers with frequency difference
Ω, adiabatic cycling of the pump parameter λ would result
in quantized transfer of ν photons from one Raman beam to
the other. If one further quantizes the Floquet drive photons
by, for instance, use of a high-Q cavity, then each adiabatic
cycle would directly backact on the cavity photons. This can
lead to either quantized absorption or emission of cavity
photons,whose behavior at lowphoton number represents an
interesting quantum limit of our problem.
Conclusion.—We have introduced a novel topological

energy pump that exhibits a topologically protected

(a) (b)

FIG. 4. (a) Phase diagram of energy pumping in an interacting
many-body localized system, numerically obtained for α ¼ 0,
L ¼ 16, Nλ ¼ 64, and Nc ¼ 256. Error bars in (b) show standard
error over a fixed number of disorder configurations. Interest-
ingly, the error bars become smaller—indicating increased
stability of the many-body localized energy pump—in the
presence of weak nonzero interactions. Eabs is in units of ℏΩ,
while W and U are in units of hopping amplitude J.
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response with no equivalent in undriven systems. The pump
is inspired by a dimensional reduction scheme from the
anomalous Floquet insulator, but features fundamentally
different topological protection and transport properties.
We note that other topological energy pumps recently
introduced in the driven qubit systems derive instead from
reducing the Thouless charge pump to zero dimensions,
replacing momentum with a magnetic field angle [38] or
the phase of a second incommensurate drive [58]. This
suggests a number of fascinating future directions from
dimensional reduction of other entries in the Floquet
periodic table [12,13], such as the Floquet generalization
of the Z2 pump [59,60] or fractionalized systems [61].
Furthermore, studying the backaction of our topological
pump on a classical or a quantum drive represents an
interesting quantum adiabatic limit on statistical mechan-
ics, where the pumping of bosonic objects such as the drive
photons is a long sought-after goal [62,63].
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