
 

High-Density Quantum Sensing with Dissipative First Order Transitions

Meghana Raghunandan,1 Jörg Wrachtrup,2 and Hendrik Weimer1,*
1Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

23. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

(Received 22 March 2017; published 9 April 2018)

The sensing of external fields using quantum systems is a prime example of an emergent quantum
technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is

proportional to
ffiffiffiffi
N

p
. However, interactions invariably occurring at high densities lead to a breakdown of the

assumption of independence between the particles, posing a severe challenge for quantum sensors
operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a
nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open
quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon
nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of
the master equation describing the open quantum many-body system, we establish the existence of a
dissipative first order transition that can be used for quantum sensing. We investigate the properties of this
phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed
using current experimental technology. Finally, we show that quantum sensors based on dissipative phase
transitions are particularly robust against imperfections such as disorder or decoherence, with the
sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can
readily be applied to other applications in quantum sensing and quantum metrology where interactions are
currently a limiting factor.
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The challenges associated with quantum sensing within
interacting systems is particularly relevant for magnetic
field sensing with nitrogen-vacancy (NV) color centers in
diamond, as strong magnetic dipole interactions present a
challenge to perform magnetometry at high densities [1].
For NV centers, performing magnetometry at high densities
is particularly important, enabling us to study processes
inside living cells [2]. These challenges imposed by
interacting systems are not totally surprising, given that
the magnetic dipole moments of NV centers are what
enables us to measure magnetic fields in the first place.
Hence, the effect we are addressing is quite generic and is
also found in related applications; for example, uncertain-
ties caused by interactions are currently one of the most
important limiting factors for optical lattice clocks [3,4].
Building on the tremendous progress in controlling

individual [5–12] and interacting [13–15] NV centers,
combined with the first studies investigating many-body
effects [16–22], we consider large ensembles of micro-
wave-driven NV centers interacting via the magnetic dipole
interaction. As an important ingredient, we also incorporate
optical pumping of the NV centers towards thems ¼ 0 spin
state; see Fig. 1. Such driven-dissipative spin systems are
closely related to dissipative Ising models studied in
Rydberg gases [23,24], which exhibit a dissipative first
order liquid-gas transition at a critical strength of the
driving field [25–27], with the first order transition line

ending in a critical point belonging to the Ising universality
class [24]. Crucially, the susceptibility of the system
diverges with the number of spins at the transition point,
showing a dramatic response of the system that can be used
for quantum sensing [28]. A key advantage of turning to
the steady state of a driven-dissipative system is that all
additional imperfections, such as disorder or decoherence,
can be integrated into the sensing process, meaning they
only shift the position of the transition without affecting its
usefulness for quantum sensing applications.
In this Letter, we demonstrate that the dissipative phase

transition is also present in the case of NV centers.
Focusing first on the case of two-dimensional arrays of
NV centers, we perform a variational analysis of the many-
body system in thermodynamic limit. We compare the
variational results to wave-function Monte Carlo simula-
tions for systems containing up to 20 spins, which to our
knowledge is the largest number of spins treated so far in an
open quantum many-body systems while retaining the full
Hilbert space. We show that, in three-dimensional systems,
the anisotropy of the dipole-dipole interactions replaces the
sharp phase transition by a smooth crossover; however, the
transition can easily be restored by applying a magnetic
field gradient of modest strength. Finally, we address the
role of additional imperfections and decoherence channels
within the setup and demonstrate that a finite T2 coherence
time does not limit the sensitivity of the quantum sensor.
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In our investigations, we consider a system of N NV
centers in a lattice geometry. Such structures can be
implemented using targeted ion implantation at the nano-
meter scale [29]. Furthermore, the NV centers can be
preferentially aligned along the axis of the external mag-
netic field [30]. We consider an effective two-level descrip-
tion of the NV centers, where the ms ¼ −1 state is off
resonant with respect to the microwave field (see Fig. 1),
due to the external bias field B0. In the rotating frame of the
driving, the Hamiltonian is of the form

H ¼ ℏΔ
2

XN
i

σðiÞz þ ℏΩ
2

XN
i

σðiÞx þ
XN
i<j

Vij; ð1Þ

where Δ is the detuning from the electron spin resonance
and Ω is the Rabi frequency of the microwave driving. The
dipole-dipole interaction Vij is given by

Vij ¼ ð1 − 3cos2ϑijÞ
μ2

jri − rjj3

×

�
1

4
½1þ σðiÞz �½1þ σðjÞz � − σðiÞþ σðjÞ− − σðiÞ− σðjÞþ

�
; ð2Þ

where ri denotes the position of the NVs, μ indicates the
magnetic dipole moment, and ϑij is the angle between the
NV axis and the vector connecting sites ri and rj. We
account for the optical pumping of the spins by considering
a quantum master equation in Lindblad form:

d
dt

ρ ¼ −
i
ℏ
½H; ρ� þ

XN
i

γ

�
σðiÞ− ρσðiÞþ −

1

2
fσðiÞþ σðiÞ− ; ρg

�
; ð3Þ

where γ is the rate of the optical pumping process, which
can be controlled by the strength of the green pump laser.

In all our calculations, we assume the NV centers to be
separated by r ¼ 5 nm and the optical pumping rate to be
γ ¼ 1 MHz. Unless we specifically investigate the response
to an additional magnetic field, we assume the driving to be
on resonance, i.e., Δ ¼ 0.
As in the case of conventional NV sensors [1], the

system is read out by the fluorescence signal from the NV
centers in the ms ¼ 1 state. The only difference is that the
dynamics of the system does not follow a Ramsey sequence
but is governed by the dissipative many-body dynamics of
the quantum master equation.
Two-dimensional systems.—We first turn to the analysis

of two-dimensional square lattices where the dipoles are
oriented perpendicular to the plane of the system. We also
simplify the analysis by considering only interactions
between adjacent lattice sites; taking the full long-range
tail into account only slightly modifies our results on a
quantitative level, but the qualitative findings will remain
unchanged [31] As a first step, we investigate the steady
state of the quantum master equation based on the varia-
tional principle for open quantum systems [25]. Here, we
use product states of the form ρ ¼ Q

iρi as our variational
basis, with ρi being the reduced density matrix at site i.
Then, we find a first order transition of the NV magneti-

zationm ¼ P
ið1þ hσðiÞz iÞ=ð2NÞ in the driving strength Ω;

see Fig. 2. This transition appears to be closely related to
what has been predicted for dissipative Ising models
discussed in the context of Rydberg gases, where the
flip-flop term of Eq. (3) is absent [32]. Crucially, the first
order transition can also be triggered by modifying the
external magnetic field, allowing us to use this transition for
the sensing of static fields.
Wave-function Monte Carlo simulations.—We perform

numerical simulations of the full quantum master equation
for systems up to 20 spins. We use the results from the

(a) (b)

FIG. 1. Setup of the system for dissipative quantum sensing. (a) Many-body system of nitrogen-vacancy centers in diamond showing
individual carbon atoms (gray) and nitrogen impurities (blue) accompanied by a vacancy site (white). The electronic ground state is a
triplet state that is split by an external bias field. (b) Sketch of the dimensionless magnetization of the system across a first order phase
transition. The response of the system strongly increases for larger system sizes. At the transition, the derivative of the magnetization is
proportional to

ffiffiffiffi
N

p
. The inset shows the sensing protocol consisting of NV initialization, dissipative many-body dynamics, and a

readout of the NV spin state.
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simulations based on a wave-function Monte Carlo
approach [33], which we extended to a massively paral-
lelized version, to serve as a benchmark for our variational
analysis. In particular, we are interested in the existence
of the first order transition predicted by the variational
approach. For this, we investigate themagnetic susceptibility
χ ¼ ∂m=∂Ω, which diverges at a first order transition.
Figure 3 shows the numerically obtained susceptibility for
different system sizes. Interestingly, we find that the sus-
ceptibility data closely follow a Weibull distribution
χðΩÞ ∼ Ωk−1 exp½−ðΩ=λÞk�. We note that the Weibull dis-
tribution has been discussed in the context of the relaxation
frommetastable states, with the parameter k controlling their
relative decay rates [34,35]. Such metastable states also
play an important role in dissipative Ising models [36,37].
To investigate the scaling with the number of spins N in
detail, we turn to a finite size scaling analysis. For this, we
aim to describe the simulation results for the susceptibility
peak in terms of a scaling function, from which we can
extract how the susceptibility peak changes withN. Here, we
also include anisotropic geometries to be able to treat larger
system sizes up to 20 spins. Our ansatz for the scaling
function is given by

χ ¼ cNαχ̃ðλÞ; ð4Þ

where λ ¼ Nx=Ny is the anisotropy given in terms of the
number of spins in the x and y direction, respectively, while c
and α are numerical constants [38]. Crucially, when the
exponent α is found to be positive, the susceptibility diverges
withN, signaling the presence of a first order transition. The
reduced scaling function χ̃ captures the effects of anisotropic
system sizes and must satisfy the conditions χ̃ðλÞ ¼ χ̃ð1=λÞ
and χ̃ð1Þ ¼ 1. Consequently, we can perform a series
expansion according to χ̃ðλÞ ¼ 1þ d½log λ�2 þOðlog½λ�4Þ,
which we can truncate for not too large anisotropies. d is
another numerical constant that can be determined from

fitting to the simulation data. Then, the reduced susceptibility
χ=χ̃ ¼ cNα should be given by a simple algebraic function.
Figure 4 demonstrates that this is indeed the case, showing
that the ansatz of Eq. (4) is correct, confirming the existence
of the first order transition. The observed exponent α ¼
0.527� 0.006 shows that the system exhibits basically the
same scaling of the sensitivity for quantum sensing as a
noninteracting ensemble (α ¼ 1=2).
Three-dimensional systems.—As the next step, we will

study the properties of the system in three spatial dimen-
sions. This will be especially important, as controlling the
implantation depth of the NV centers will be particularly
challenging, making it natural to focus on effectively three-
dimensional setups. Here, we turn to a three-dimensional
cubic lattice to investigate the consequences. In particular,
the anisotropy of the dipole-dipole interaction will now
play an important role. Crucially, the dipole-dipole inter-
action vanishes when integrated over the full solid angle,
as the ferromagnetic and antiferromagnetic contributions

FIG. 2. Variational solution for the steady state magnetization
showing a first order phase transition. The phase transition can be
triggered by varying either the Rabi frequency Ω or the external
magnetic field (inset) (V ¼ 2π × 400 kHz, γ ¼ 1 MHz).

FIG. 3. Averaged results from 1000 wave-functionMonte Carlo
trajectories showing the steady state susceptibility χ for 3 × 3 and
4 × 4 geometries. The solid lines are fits to a Weibull distribution.

FIG. 4. Finite size scaling of the peak of the reduced suscep-
tibility χ=χ̃. The collapse of the data onto a single line in the
logarithmic plot shows that the susceptibility diverges with the
system size N. The solid line is an algebraic fit to the data.
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exactly cancel each other. To capture this property in our
nearest-neighbor model, we set the interaction energy within
the plane of the dipoles toV ¼ μ2=r3 and to−2V in the third
direction.
In three dimensions, the system sizes are prohibitively

large for wave-functionMonte Carlo simulations. Therefore,
we restrict our analysis to the variational approach, noting
that, in larger dimensions, the variational solution is even
closer to the exact steady state [39]. Here, we consider a
system consisting of three two-dimensional layers, with the
central layer being at the zero point of the magnetic field
gradient. Within the variational analysis, we find that the
other two layers are almost completely polarized in the
ms ¼ 0 state; i.e., adding additional layers will not change
the results. Additionally, we find that the anisotropy of the
dipole-dipole interaction replaces the first order transition by
a smooth crossover; see Fig. 5. Nevertheless, it is possible to
recover the transition by applying a magnetic field gradient
along the NVaxis, effectively breaking the symmetry of the
dipolar interaction. The first order transition appears already
for quite modest field gradients on the order of δB ¼
103 T=m, which are readily achievable in experiments.
For larger values of the gradient, the first order jump in
the magnetization will be even more pronounced, eventually
recovering the 2D results for very strong gradients. This
underlines the usefulness of dissipative quantum sensing
even for three-dimensional systems.
Decoherence and other imperfections.—So far, our

analysis has been based on a rather idealized setup. In
any real diamond sample, there will be several sources of
imperfections related to decoherence or to disorder from
imperfect positioning of the NV centers. First, we want to
point that disorder in the NV interaction energies or missing
sites in the lattice due to off-axis NV centers are not going
to play an important role. Crucially, these imperfections only
affect the strengths of the coupling constants but cannot
reverse their signs. From the analysis of random-bond Ising

models [40], it is known that the underlying phase transition
is robust against such a type of disorder, which is consistent
with our numerical simulations for disorder in the system
[31]. This leaves decoherence processes caused by residual
nitrogen impurities and 13C nuclear spins as the dominant
challenge. Hence, we investigate in detail how a limited T2

time caused by these decoherence processes will affect the
performance of the dissipative quantum sensor.
Within the variational analysis, we add additional jump

operators ci ¼
ffiffiffiffiffiffiffiffiffiffi
1=T2

p
σðiÞz to the quantum master equation.

Importantly, we find that the existence of the first order
transition is robust against quite strong decoherence rates; see
Fig. 6. Crucially, the phase transition does notmerely survive
in a regime where the decoherence is perturbatively small
compared to the dipole-dipole interaction, but even in a
regime where the decoherence rates are several times larger
than the coherent interaction strength, which amounts toV ¼
2π × 400 kHz at a NV distance of r ¼ 5 nm in our case. We
attribute this strong robustness against decoherence to the
steady state being an effective thermal (but nonclassical) state
[41]. Such a state is diagonal in an appropriate energy
eigenbasis, making it less susceptible to decoherence proc-
esses. The additional decoherence also leads to a shift in the
transition point, requiring one to characterize the coherence
properties of a device before employing it as a quantum
sensor. For more dilute NV samples, the global timescale of
the system gets reduced, leading to a stronger susceptibility
to decoherence. For example, for a NV distance of r ¼
11 nm, the phase transition will be replaced by a smooth
crossover for T2 at about 500 ns instead of 50 ns. We also
point out that both the first order transition and the robustness
to decoherence remain present without an external bias field
B0 [31].
Finally, we estimate the sensitivity of the dissipative

quantum sensor, which we can extract from the finite size

FIG. 5. Variational solution for the magnetization of the central
layer in a three-dimensional system. The first order transition is
replaced by a smooth crossover. Using a magnetic field gradient
(inset), the phase transition can be restored.

FIG. 6. Consequences of additional decoherence channels for
different T2 times. The first order transition is particularly robust
to these additional decoherence processes, even when their
associated rates become larger than the strength of the dipole-
dipole interaction between the NV centers. Only for very short T2

times is the phase transition replaced by a smooth crossover.
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scaling behavior of the susceptibility, as the change in
fluorescence from the NV centers is proportional to the
magnetic susceptibility [1]. Within our wave-function
Monte Carlo simulations, we find that the susceptibility
for dc fields χdc ¼ ∂m=∂B shows very similar behavior as
the ac susceptibility [31], so the dc and ac sensitivity of the
sensor are essentially the same. This is very different in NV
magnetometry using noninteracting ensembles, as there the
T�
2 limited dc sensitivity is generally worse than the T2

limited ac sensitivity, since dc sensing does not allow for
dynamical decoupling techniques [1]. As our proposed
sensor is not limited by T�

2, we expect our approach to be
particularly useful for sensing dc fields. We can infer the
sensitivity of the dissipative sensor to be η ≈ 3 nTHz−1=2

for N ¼ 103 spins and η ≈ 300 fTHz−1=2 for N ¼ 1011

[31]. This sensitivity is approximately a factor of 3
improvement over what has been recently demonstrated
using large ensembles of noninteracting NV centers [42]
while at the same time offering a much smaller sensor size.
Additionally, we stress that our dissipative quantum sensor
can tolerate large decoherence rates and operate at very
small sensor sizes. These unique features makes it
extremely promising to use dissipative NV sensors in
NV-rich nanodiamonds [43], e.g., for the investigation of
biological processes inside living cells.
In summary, we have established a quantum sensing

protocol based on dissipative phase transitions. We have
demonstrated the usefulness of our approach for quantum
sensing with nitrogen-vacancy defect centers in diamond,
finding a strong resilience of our protocol against
decoherence processes. Finally, our protocol does not
depend on the microscopic details of the sensing process,
allowing for an immediate transfer to other applications in
quantum sensing (see [44] for a concrete example) and
quantum metrology.
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