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We derive a family of Gaussian non-Markovian stochastic Schrödinger equations for the dynamics of open
quantum systems. The different unravelings correspond to different choices of squeezed coherent states,
reflecting different measurement schemes on the environment. Consequently, we are able to give a single shot
measurement interpretation for the stochastic states and microscopic expressions for the noise correlations of
the Gaussian process. By construction, the reduced dynamics of the open system does not depend on the
squeezing parameters. They determine the non-Hermitian Gaussian correlation, a wide range of which are
compatible with the Markov limit. We demonstrate the versatility of our results for quantum information
tasks in the non-Markovian regime. In particular, by optimizing the squeezing parameters, we can tailor
unravelings for improving entanglement bounds or for environment-assisted entanglement protection.
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Introduction.—Perhaps the most dramatic effect of the
coupling of a quantum system to an environment is the loss
of quantum properties of its state [1]. Yet, decoherence
seldom occurs in a simple manner. In the last decade,
advances in experimental techniques made it possible to
observe non-Markovian dynamics in open quantum sys-
tems as, for example, micromechanical [2] and optical [3]
systems, highlighting the central part it plays in preserving
the coherent features of the system [4]. Non-Markovian
dynamics has been proven to be essential for improvements
in quantum metrology [5,6], advances in quantum thermo-
dynamics [7], and optimal control scenarios [8], in which
the persistence of correlations such as entanglement is
crucial. The interplay of (non-Markovian) open system
dynamics and time evolution of quantum correlations is an
active field of research [9].
General open quantum system dynamics can be

approached from various perspectives. One can, as is most
commonly done, use the projection operator formalism
[10,11], time local master equations [12], or hierarchical
equations of motion [13,14], all of which describe the
dynamics on the level of the density matrix. Alternatively, a
stochastic description in terms of pure state unravelings
[stochastic Schrödinger equations (SSEs)] is possible.
Quantum jumps and quantum state diffusion are then
suitable methods both in the Markovian [15,16] and
non-Markovian [17,18] regimes. In particular, a complete
parametrization of diffusive SSEs in the Markovian regime
is known [19,20]. Changing these parameters allows
control over the noise correlations driving the stochastic
dynamics, which can be used to optimize the trajectories,
e.g., for entanglement detection [21,22]. Moreover, in the
Markov case, a physical interpretation for the stochastic

states can be given in terms of continuous monitoring of the
environment of the open system [23].
Recently, there have been similar efforts in the non-

Markovian regime. Diósi and Ferialdi [24,25] have studied
the structure of general Gaussian non-Markovian SSE
going beyond the standard non-Markovian quantum state
diffusion (NMQSD) [18,26–28]. The same class of SSEs
was then re-examined by Budini from the perspective of
its symmetries [29]. However, a microscopic justification
and derivation of general Gaussian non-Markovian SSEs is
still lacking.
In this Letter we aim to fill this gap by providing a novel

parametrization of the Gaussian noise correlations using
squeezed states. We offer a single shot measurement
interpretation for our family of Gaussian non-Markovian
unravelings. Moreover, we demonstrate their potential: due
to the explicit parametrization and physical interpretation
we are able to significantly improve entanglement bounds
and perform environment-assisted entanglement protection
in the non-Markovian regime.
Open system model and general Gaussian

unravelings.—We investigate the dynamics of a system
linearly coupled to a bosonic bath. The Hamiltonian of the
total system is given byH ¼ HS þHB þHSB, whereHS is
the Hamiltonian of the system,HB ¼ P

λωλb
†
λbλ is the bath

Hamiltonian, and HSB ¼ P
λgλðLb†λ þ L†bλÞ describes

their interaction. Here, bλ and b†λ are bosonic annihilation
and creation operators of the bath mode λ, with frequency
ωλ, satisfying ½bλ; b†λ0 � ¼ δλλ01. Furthermore L is an arbi-
trary coupling operator acting on the system and account-
ing for its interaction with all modes of the bath through
coupling amplitudes gλ, which, without loss of generality,
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are chosen to be real. We switch to the interaction picture
with respect to the bath, in which the transformed
Hamiltonian reads HIðtÞ ¼ HS þ

P
λgλðLb†λeiωλt þ L†bλ

e−iωλtÞ. We assume, for simplicity, that the bath is initially
at zero temperature, ρBð0Þ ¼⊗λ j0λih0λj.
The key ingredient for our derivation of the generalized

Gaussian SSE are Bargmann squeezed states. For mode λ,
these states are defined as kzλ; ξλi≡ Rðzλ; ξλÞj0λi, where
Rðzλ; ξλÞ ¼ exp ½zλb†λ − ðξλ=2Þb†2λ �, with zλ, ξλ ∈ C, and
jξλj < 1 [30]. Since Rðzλ; ξλÞ is not unitary, the kzλ; ξλi
are not normalized, yet the condition jξλj < 1 guarantees
that they are normalizable; see the Supplemental Material
[31]. Most notably, the states jjzλ; ξλi are analytic both in
zλ and ξλ, and overcomplete. In the multimode bosonic
environment, one can then write

1 ¼
Z

d2zpξðzÞkz; ξihz; ξk; ð1Þ

with kz; ξi ¼⊗λ kzλ; ξλi, and measure d2zpξðzÞ¼Q
λ½ðdRezλdImzλÞ=ðπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jξλj2

p
Þ�expð−f½jzλj2− 1

2
ðξ�λz2λ þ

ξλz�2λ Þ�=ð1− jξλj2ÞgÞ.
With the above completeness relation for squeezed

coherent states at hand, we now turn to the system dynamics.
Using relation (1), a pure state jΨti of the composite system,
evolving according to Schrödinger equation

d
dt

jΨti ¼ −iHIðtÞjΨti; ð2Þ

can, at all times t, be expanded as

jΨti ¼
Z

d2zpξðzÞjψ ξ� ðz�; tÞijjz; ξi; ð3Þ

where jψ ξ� ðz�; tÞi≡ hz; ξjjΨti is the unnormalized state
vector of the system relative to the environment squeezed
coherent state jjz; ξi. This approach is a generalization of
non-Markovian quantum state diffusion with an additional
freedom through squeezing parameters ξ [18,27,28]. We
emphasize that jψ ξ� ðz�; tÞi is an analytical function of both
z� and ξ�. Tracing over the bath, we find

ρSðtÞ ¼ trBfjΨtihΨtjg

¼
Z

d2zpξðzÞjψ ξ� ðz�; tÞihψ ξ� ðz�; tÞj

≡M½jψ ξ� ðz�; tÞihψ ξ� ðz�; tÞj�: ð4Þ

That is, the reduced density operator of the system is
obtained by averaging over the unnormalized relative states
with the Gaussian probability density pξðzÞ; we denote this
weighted integral over d2z by M½·�. Equations (3) and (4)
follow directly from the resolution of the identity in the form
of Eq. (1). In order to obtain Eq. (4), one has to insert that

resolution of the identity under the partial trace. Note, that
both the relative states jψ ξ�ðz�; tÞi and the probability
density pξðzÞ depend parametrically on ξ in such a way
that ρSðtÞ is independent of ξ; this reflects the basis
independence of the partial trace over the environmental
degrees of freedom. Equation (4) represents a family of
unravelings of the open system dynamics parametrized by
the squeezing parameters ξ. Moreover, decomposition (3)
allows for a single-shot measurement interpretation of the
unraveling; a topic to which we come back later in the Letter.
We are now in a position to state the first main result

of this Letter. Starting from the Bargmann squeezed
state representation of the total state, Eq. (3), we derive
an SSE for the time evolution of the relative states
jψ ξ� ðz�; tÞi. Combining Eqs. (3) and (2), and using the
relations b†λkzλ; ξλi ¼ ð∂=∂zλÞkzλ; ξλi and bλkzλ; ξλi ¼
½zλ − ξλð∂=∂zλÞ�kzλ; ξλi [30,31,40], we are able to derive
a closed linear non-Markovian SSE for the open system
state jψ ξ� ðz�; tÞi,

d
dt

jψ ξ� ðz�; tÞi ¼ −iHSjψ ξ� ðz�; tÞi þ Lz�t jψ ξ� ðz�; tÞi

−
Z

t

0

ds½αðt; sÞL† þ ηðt; sÞL�

×
δ

δz�s
jψ ξ�ðz�; tÞi: ð5Þ

Here we use the chain rule ð∂=∂z�λÞð·Þ ¼
R
dsð∂z�s=∂z�λÞ

ðδ=δz�sÞð·Þ, and introduce the quantities

z�t ≡ −i
X
λ

gλeiωλtz�λ ; ð6aÞ

αðt; sÞ≡X
λ

g2λe
−iωλðt−sÞ; ð6bÞ

ηðt; sÞ≡ −
X
λ

ξ�λg
2
λe

iωλðtþsÞ: ð6cÞ

Equation (4) shows that the reduced state dynamics is
obtained by a Gaussian average over the solutions of
Eq. (5). This amounts to regarding z�t to be a Gaussian
stochastic process; see Eq. (6a). A simple calculation gives
M½z�t � ¼ M½zt� ¼ 0, and the second order correlations

M½ztz�s � ¼ αðt; sÞ; M½z�t z�s � ¼ ηðt; sÞ; ð7Þ

completely specifying the Gaussian process z�t .
Our representation in terms of squeezed Bargmann states

allows for nonzero ηðt; sÞ correlation, determined by the
squeezing parameter ξ. The choice ξ ¼ 0 leads to
ηðt; sÞ ¼ 0, which is the standard NMQSD [18,27,28].
We are thus able to give a microscopic derivation of the
generalized Gaussian non-Markovian SSE.
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Families of Gaussian unravelings, Markov limits, and
single shot measurements.—Since the partial trace over
the environment is basis independent, it is clear that the
dynamics of the reduced state ρSðtÞ cannot depend on the
squeezing parameter ξ and therefore must be independent
of ηðt; sÞ. However, different choices of ξ, and thus ηðt; sÞ,
define different unravelings, Eq. (5), with corresponding
correlations, Eq. (7).
General Gaussian non-Markovian SSEs, similar to

Eq. (5), have been recently postulated based on the
properties of Gaussian processes and symmetry properties
of the system-environment interaction [24,29]. There,
arbitrary αðt; sÞ and ηðt; sÞ are considered, satisfying a
general positivity condition. The physics of our model
[Eqs. (6b) and (6c)] determines αðt; sÞ ¼ αðt − sÞ to be a
stationary correlation while ηðt; sÞ ¼ ηðtþ sÞ is a function
of tþ s. The general positivity condition on the correla-
tions, when applied here, corresponds to the normalizabil-
ity condition jξλj < 1 mentioned earlier.
Note that in the Markov limit, when αðt; sÞ → γδðt − sÞ,

the average dynamics follows the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equation for any
choice of ξ in Eq. (6c). We stress that this can be shown
starting from Eq. (5) without having to resort to the
microscopic origin. We can conclude that the Markov limit
fixes solely the form of the correlation αðt; sÞ leaving a
wide range of choices for ηðt; sÞ.
Let us now return to state decomposition (3) and consider

the connection it provides between our formalism and
measurement theory. A single shot measurement interpre-
tation of the state jψ ξ� ðz�; tÞi in Eq. (5) can be offered: It is
the state of the system after a generalized measurement of
the bath with an outcome labeled by z has been performed
at time t. This can be made evident by noticing that the set
of operators EξðzÞ ¼ d2zpξðzÞkz; ξihz; ξk is a positive-
operator valued measure (POVM), see Supplemental
Material [31]. Then, from representation (3) of state jΨti,
the probability of obtaining a measurement outcome in the
vicinity of z, when at a time t > 0 a measurement of the
observable Eξ is done on the bath, is

Pξðz; tÞd2z ¼ pξðzÞkψ ξ� ðz�; tÞk2d2z: ð8Þ

Freedom to choose ξ allows us to optimize the meas-
urement on the environment for certain tasks. Next we will
discuss two of them: ξ-optimal bounds on entanglement
dynamics [21,41] and environment-assisted entanglement
protection [42,43].
SL-invariant entanglement measures.—We now address

the problem of entanglement evolution in open multipartite
systems. First steps using a diffusive unraveling for the
quantification of entanglement dynamics in non-Markovian
open systems were taken in Ref. [41]. With the new family
of unravelings at hand, Eq. (5), we are now in a position to

tackle challenging tasks in quantum information dynamics
in the non-Markovian regime.
We consider the entanglement evolution in multipartite

open systems in which the subsystems do not interact
among themselves, but one or more of them may be
coupled to its own local bosonic environment. The system
consists of N subsystems, described by a Hilbert space
HS ¼ H1 ⊗ H2 ⊗ � � � ⊗ HN , each with arbitrary finite
dimension. The system Hamiltonian HS is a sum of local
Hamiltonians. Subsystem k couples to its local bath
through traceless operators Lk with real coupling ampli-
tudes gk;λ.
In order to quantify entanglement in this system we

use special linear (SL)-invariant multipartite measures of
entanglement μinv [44–46]. These are polynomial measures
defined by the following two properties: (i) They are
invariant under local linear transformations G ¼ G1 ⊗
G2 ⊗ � � � ⊗ GN , where Gi acts on subsystem i and
detGi ¼ 1, that is, μinvðGψÞ ¼ μinvðψÞ. (ii) They are
homogeneous functions of degree two for all u ∈ C, i.e.,
μinvðuψÞ ¼ juj2μinvðψÞ. SL-invariant multipartite measures
can be used on mixed states by means of their convex roof
extension

μinvðρSÞ ¼ min
fpk;ψkg

X
k

pkμinvðjψkiÞ; ð9Þ

where the minimum is taken over all possible pure state
decompositions of ρS, i.e., ρS ¼

P
kpkjψkihψkj [47]. The

well known concurrence is the prime example of such
an SL-invariant measure [48]. Note that there exists also a
generalized multipartite concurrence for mixed states
[49,50], which however, is not SL invariant [51].
Following Ref. [41], for a system satisfying the above

conditions, given an initial normalized state jψ̃ð0Þi, a
scaling relation between the entanglement μinvðjψ̃ξðz; tÞiÞ
of the normalized relative state jψ̃ξðz; tÞi ¼ ½ðjψ ξ�ðz�; tÞiÞ=
ðkψ ξ� ðz�; tÞkÞ� and the initial entanglement in the system
μinvðjψ̃ð0ÞiÞ can be established:

xξðz; tÞ≡ μinvðjψ̃ ξðz; tÞiÞ
μinvðjψ̃ð0ÞiÞ

¼ fξðz; tÞ
Pξðz; 0Þ
Pξðz; tÞ

: ð10Þ

The second equality follows from measurement outcome
probabilities (8), and the details of the scaling function
fξðz; tÞ can be worked out similar to Ref. [41]; see
Supplemental Material [31]. Crucially, the new scaling
relation now depends on the squeezing parameter ξ.
ξ-optimal bounds on entanglement dynamics.—

Estimating and finding bounds on multipartite entangle-
ment is a long-standing problem in entanglement theory
[9]. Based on Eq. (10), the freedom provided by the
dependence of the scaling function fξðz; tÞ on ξ allows
us to look for the tightest possible upper bound on the
entanglement μinv(ρSðtÞ) of the reduced state of the system
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ρSðtÞ, within the family of unravelings Eq. (5). In the
framework of Markovian open quantum system dynamics
diffusive equations have been used to achieve this goal
[21,22]. The new family of non-Markovian unravelings
permits us to generalize these results to the non-Markovian
regime. The pure state decomposition (4) provides an
upper bound for the entanglement of the open system
state, we find

μinv(ρSðtÞ)
μinvðjψ̃ð0ÞiÞ

≤ x̄ξðtÞ; ð11Þ

where x̄ξðtÞ is the mean entanglement in the multipartite
open system; see the Supplemental Material [31]. Here
we use Eq. (10), which also leads to the expression x̄ξðtÞ ¼R
d2zPξðz; 0Þfξðz; tÞ.
Remarkably, both the scaling relation (10) and the upper

bound (11) are independent of the initial state as well as of
the specific entanglement measure used, as long as it is SL
invariant.
We demonstrate the significance of our findings with an

example of non-Markovian multipartite open quantum
system dynamics. For concreteness, let us assume that
M (M ≤ N) of the subsystems are qubits (two-level
systems), each one of them coupled to its own local
dephasing bath via Lk ¼ L ¼ σz, (k ¼ 1…M), while the
rest of the N −M subsystems remain isolated [52]. For
dephasing environments the scaling function becomes
independent of z (see Supplemental Material [31]) and
the mean entanglement in the system reduces to

x̄ξðtÞ ¼ fξðtÞ ¼
YM
k

exp

�
−
1

2

Z
t

0

dsγkðsÞ
�
; ð12Þ

with time-dependent dephasing rates

γkðsÞ ¼ 4Re
Z

s

0

ds0½αkðs; s0Þ þ ηkðs; s0Þ�: ð13Þ

Clearly, any choice of ηk provides, via Eq. (12), an upper
bound on the entanglement of the state of the system ρSðtÞ.
One can now ask for the optimal choice ηoptk (and therefore
ξoptk ), which would yield the tightest possible bound. Before
going into the search for this optimal unraveling a reminder
on the meaning of our theory is due here. As a result of the
single shot measurement interpretation of the system state,
an optimization of the mean entanglement x̄ξ at time t ¼ T
must target that specific time and may not be the optimal
choice for a different time t ≠ T. With this in mind, we may
now return to the task of minimizing x̄ξðTÞ in Eq. (12). We
assume for simplicity that all local dephasing channels are
identical so that γkðtÞ ¼ γðtÞ. For a given time T, x̄ξðTÞ is
minimal if the integral in Eq. (12) is maximized for each
bath mode λ. A simple calculation shows that the optimal

value for x̄ξðTÞ is obtained by setting the squeezing
parameter ξoptλ ¼ −eiωλT [53], and yields the upper bound

x̄ξoptðtÞ ¼ exp

�
−
M
2

Z
t

0

dsγoptðsÞ
�
: ð14Þ

Exact results on entanglement evolution in multipartite
open systems with non-Markovian dynamics are scarce
[9,54], making it difficult to assess how tight our bound
really is. Yet, for the case of two qubits with only one of
them coupled to a dephasing channel, the exact entangle-
ment dynamics is given in Ref. [22] for Markovian and in
Ref. [55] for non-Markovian dynamics. Our bound exactly
reproduces this entanglement evolution in both cases.
Indeed, our ξ-optimal bound is also exact for any N-partite
open system, where only one subsystem of dimension two
is exposed to an arbitrary dephasing channel [45]. In Fig. 1
we show the entanglement dynamics, the ξ-optimal entan-
glement bound (indistinguishable), and the previously
obtained ξ ¼ 0 bound for Markov-, Ohmic-, and super-
Ohmic dephasing environments.
The multichannel result, Eq. (14), coincides with the

upper bound of the entanglement dynamics for a multi-
partite mixed state given in Corollary 4 of Ref. [45].
Environment-assisted entanglement protection.—It has

been shown that if and only if the dynamics of the open
system is given by a random unitary channel, then there
exists a protocol perfectly restoring the lost quantum
information [42]. The error correction scheme is condi-
tional on the measurement performed on the system’s
quantum environment. Such a procedure has been explic-
itly constructed for two qubit [43] and for N-qubit [56]
pure dephasing dynamics.
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T

0 1 2 3 4 5 6

dT

0 1 2 3 4 5 6

dT
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FIG. 1. Mean entanglement evolution in a N-partite open
system, where only one subsystem of dimension two is exposed
to a dephasing channel. (a) Markov, (b) Ohmic, and (c) super-
Ohmic environment [41], where γ is the Markov decay rate and
ωd is the cutoff frequency. In all cases the upper bounds given
by x̄ξoptðTÞ (blue continuous line) coincide with the exact
dynamics of the reduced state entanglement (cf. Refs. [22,55]).
For comparison we show the bound obtained for x̄ξ¼0ðTÞ (red
dashed line), corresponding to the bound using the standard
NMQSD (η ¼ 0).
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Our dephasing channel is of random unitary type.
However, having restricted the measurement to
Bargmann squeezed state POVMs we do not expect to
recover the initial state but instead we aim to restore the
initial entanglement.
Indeed, by choosing ξprotλ ¼ eiωλT , Eq. (12) gives the

bound x̄ξprotðTÞ ¼ 1. This means that for any outcome z of
this optimal measurement at time T the conditional state of
the open system contains the initial amount of entanglement.
Remarkably, we are able to construct explicitly a

measurement on a realistic quantum environment that
realizes an environment-assisted entanglement protection
scenario, generalizing earlier considerations on Markov
open quantum systems [22,57,58].
Let us finally remark that with our SSE we are able to

assess the dynamics of entanglement without first solving
the reduced state dynamics [22].
Conclusions.—In the present Letter we derived a gener-

alized Gaussian non-Markovian SSE by expanding the
environment in a Bargmann squeezed state basis. Each
choice of the squeezing parameter ξ corresponds to a
different unraveling and reflects a different measurement
done on the environment of the open quantum system.
Thus our results also add to the discussion on the objectivity
of collapse models in the non-Markovian regime [59,60].
Our microscopic approach leads to a stationary Hermitian
correlation αðt; sÞ and to a nonstationary non-Hermitian
correlation ηðt; sÞ for the Gaussian noise z�t . By construction,
the reduced dynamics is independent of ηðt; sÞ. In the
Markov limit we see that a wide range of different ηðt; sÞ
are allowed, being compatible with the GKSL dynamics. We
demonstrated the power of our family of unravelings for
quantum information tasks in the non-Markovian regime. In
particular, for local quantum channels, by optimizing over
the squeezing parameter ξ, we can tailor the ensemble of
relative states for ξ-optimal entanglement bounds or for
environment-assisted entanglement protection.
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