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Quantum computation places very stringent demands on gate fidelities, and experimental
implementations require both the controls and the resultant dynamics to conform to hardware-specific
constraints. Superconducting qubits present the additional requirement that pulses must have simple
parameterizations, so they can be further calibrated in the experiment, to compensate for uncertainties
in system parameters. Other quantum technologies, such as sensing, require extremely high fidelities.
We present a novel, conceptually simple and easy-to-implement gradient-based optimal control
technique named gradient optimization of analytic controls (GOAT), which satisfies all the above
requirements, unlike previous approaches. To demonstrate GOAT’s capabilities, with emphasis on
flexibility and ease of subsequent calibration, we optimize fast coherence-limited pulses for two
leading superconducting qubits architectures—flux-tunable transmons and fixed-frequency transmons
with tunable couplers.

DOI: 10.1103/PhysRevLett.120.150401

Introduction.—The ability to drive a quantum system to
a desired target in a fast and efficient manner is at the heart
of emerging quantum technologies [1]. Finding the optimal
control pulse to drive the quantum system to a desired
state or to generate a desired gate has been the subject of
extensive research since the first applications of quantum
optimal control (QOC) [2–5]. QOC has been applied
experimentally to photochemical reactions [6], where
progress continues to this day [7]. It has also been applied
to nuclear magnetic resonance [3,8,9], with applications in
medical imaging and spectroscopy. New experimental
methods to control quantum systems have led to increased
interest in QOC, which has been applied to processes as
diverse as high harmonic generation [10], control of energy
flow in biomolecules [11], attosecond physics [12], and
quantum computing [13,14]. Superconducting qubits raise
additional challenges to QOC, as fabrication variability
implies, pulses are often optimized in simulation using a
somewhat inaccurate model of the system. To achieve high
fidelity for such mischaracterized systems, a second in situ
optimization of pulse parameters is needed (also known as
calibration or tune up). The latter requires simple functional
forms of the pulses.
The Letter is organized as follows. First, we present

criteria for an ideal QOC algorithm, with specific emphasis
on unique needs of superconducting qubits. Second, we
formally define the optimal control task and present a new
and extremely simple QOC algorithm, gradient optimiza-
tion of analytic controls (GOAT), which we believe is
the first to simultaneously satisfy all criteria. Third, we
apply GOAT to superconducting qubit systems—the flux
tunable coupler [15] and frequency-tunable qubits [16],

producing simple, realistic, bandwidth-limited pulses,
which implement coherence-limited two-qubit gates, sig-
nificantly shorter than have currently been achieved in
experiments.
Requirements of QOC.—A practical QOC method

ideally meets the following three criteria.
(i) Flexibility.—AQOC method must be flexible enough

to accurately model the experimental system, including
all control constraints, transfer functions, etc. Moreover, it
must be flexible enough to utilize any control ansatz, so a
simple control pulse which suits the system in question
can be found. Manufacturing solid-state qubits results in
variations between samples and, therefore, Hamiltonians
which are not known with the required precision (this is
true to a lesser extent in most quantum systems). To
achieve highly accurate controls, a second closed-loop
in-experiment optimization is required to calibrate the drive
shape parameters to the specific sample [17,18]. Therefore,
a good QOC method produces pulses described by only a
few parameters, so that subsequent calibration is feasible.
The calibration can then be performed using methods such
as Ad-HOC [19] or ORBIT [20]. This is a reason for the
popularity of the DRAG method [21], a fully analytic
method to design few-parameter pulses avoiding unwanted
transitions. Unfortunately, DRAG cannot be extended to
arbitrary constraints.
(ii) Numerical accuracy.—A QOC method must be

numerically accurate. With technologies aimed at quantum
computation, one must achieve error rates below an error-
correction threshold [22–25]. Surface codes [26], for
example, require gate infidelities of 10−4 to limit overhead
[27]. Ion trap architectures [28,29] and quantum circuits
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based on Josephson junctions, are approaching this thresh-
old [30]. Other applications, such as sensing and metrology,
require extremely high fidelities. A good QOC method
must not make any approximations which degrade numeri-
cal accuracy, as this may lead to false fidelity estimates.
(iii) Speed.—As a practical tool, a good QOC method

should be fast, even when the number of parameters is in
the double-digits, and preferably easily parallelizable.
There are multiple factors affecting overall computation
effort. Primarily, the effort depends on the number of
iterations required to reach the desired fidelity, implying
that the search of parameter space must be gradient driven.
In addition, several additional factors are of importance,
such as the processing done at each iteration. For example,
when using piecewise-constant controls, the effort scales
linearly with the number of time slices and can be very
inefficient.
The QOC task.—Assume a system whose dynamics is

described by a drift Hamiltonian H0 and a set of control
Hamiltonians Hk. The total Hamiltonian reads

Hðᾱ; tÞ ¼ H0 þ
XC
k¼1

ckðᾱ; tÞHk; ð1Þ

where ck are the control functions, characterized by a set of
parameters ᾱ. For example, the controls may be a super-
position of Gaussian pulses,

ckðᾱ; tÞ ¼
Xm
j¼1

Ak;j exp ð−ðt − τk;jÞ2/σ2k;jÞ; ð2Þ

with

ᾱ ¼ fAk;j; τk;j; σk;jgk¼1…C;j¼1…m: ð3Þ

The choice of control ansatz is governed by two consid-
erations: constraints and sparsity. The former relates to the
ease with which experimental control constraints can be
modeled by the ansatz (e.g., if the control is bandwidth
limited, a Fourier representation is natural). The latter
relates to producing pulses which are described by only
a few parameters (and, therefore, easily calibrated). In the
examples below, we have found Fourier and erf parameter-
izations to low parameter counts pulses.
For our purpose, the goal function to minimize is defined

as the projective SU distance (infidelity) between the
desired gate, Ugoal, and the implemented gate, UðTÞ, [31]
(see, also, [32])

gðᾱÞ ≔ 1 −
1

dimðUÞ jTr(U
†
goalUðTÞ)j; ð4Þ

where UðtÞ is the time ordered (T ) evolution operator

Uðᾱ; TÞ ¼ T exp

�Z
T

0

−
i
ℏ
Hðᾱ; tÞdt

�
: ð5Þ

GOAT.—Now, we present a novel QOC algorithm which
uniquely meets all criteria described above. GOAT’s ability
to use any control ansatz makes it feasible to find drive
shapes described by a small number of parameters, suitable
for calibration.
A gradient-based optimal control algorithm requires

two ingredients: an efficient computation of ∂ ᾱgðᾱÞ and
a gradient-based search method over parameter space.
GOAT presents a novel method for the former, while using
any standard algorithm for the latter. Consider the gradient
of the goal function Eq. (4) with respect to ᾱ,

∂ ᾱgðᾱÞ ¼ −Re
�
g�

jgj
1

dimðUÞTr(U
†
goal∂ ᾱUðᾱ; TÞ)

�
: ð6Þ

Neither Uðᾱ; TÞ nor ∂ ᾱUðᾱ; TÞ can be described by closed
form expressions. U evolves under the equation of motion
(e.o.m.) ∂tUðᾱ; tÞ ¼ −ði/ℏÞHðᾱ; tÞUðᾱ; tÞ. By taking the
derivative of the U e.o.m. with respect to ᾱ and swapping
derivation order, we arrive at a coupled system of e.o.m.’s
for the propagator and its gradient,

∂t

�
U

∂ ᾱU

�
¼ −

i
ℏ

�
H 0

∂ ᾱH H

��
U

∂ ᾱU

�
: ð7Þ

As ᾱ is a vector, ∂ ᾱU represents multiple equations of
motion, one for each component of ᾱ. ∂ ᾱH is computed
using the chain rule and Eqs. (1), (2). We note that Eq. (7)
was first presented in [33], but was not used for QOC.
GOAT optimization proceeds as follows: Starting at some

initial ᾱ (random or educated guess), initiate a gradient-driven
search (e.g., limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) [34]) to minimize Eq. (4). The search
algorithm iterates, requesting evaluation of Eqs. (4), (6) at
various values of ᾱ, and will terminate when the requested
infidelity is reached or it fails to improve g further. Evaluation
of gðᾱÞ, ∂ ᾱgðᾱÞ requires the values of Uðᾱ; TÞ and
∂ ᾱUðᾱ; TÞ. These are computed by numerical forward
integration of Eq. (7), by any mechanism for ordinary
differential equation (ODE) integration that is accurate and
efficient for time-dependent Hamiltonians, such as adaptive
Runge-Kutta. Initial conditions are Uðt ¼ 0Þ ¼ I and
∂ ᾱUðt ¼ 0Þ ¼ 0. Note that no back propagation is required.
Experimental constraints can be easily accommodated in

GOAT by mapping the optimization from an unconstrained
space to a constrained subspace, and computing the
gradient of the goal function using the chain rule. For
example, ᾱ components may be constrained by applying
bounding functions, e.g., αk →

1
2
ðvmax − vminÞ sinðᾱkÞ þ

1
2
ðvmax þ vminÞ which imposes αk ∈ ½vmin…vmax�.
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Amplitude constraints and a smooth start and finish of the
control pulse can be enforced by passing the controls
through a window function which constrains them to a
time-dependent envelope. Gradients for ∂ ᾱH flow via the
chain rule. See Appendix C of the Supplemental Material
[35] for a fully worked out example.
Application of GOAT to state transfer, open systems, and

super-operator generation are possible by replacing Eq. (7)
with a derivative of the suitable equation of motion with
respect to ᾱ, see [36]. Filtersmay bemodeled by including the
filter’s internal state e.o.m., alongside Eq. (7), when deriving
by ᾱ. See, also, [37]. Equations (6) and (7) can be modified
to provide second-order gradient information, allowing
Hessian-driven search, such as Newton-Raphson (see [38]).
Comparison with current algorithms.—Examination of

the prevailing QOC methods reveals none meet all three
criteria for an ideal QOC method.
One class of QOC methods is based on gradient-free

optimization of the parameters: sample gðᾱÞ at several ᾱ’s,
deduce one or more new ᾱ’s for which g is expected to be
lower, and repeat. This approach is simple and flexible,
and is the only possible procedure for closed-loop calibra-
tion. However, it converges very slowly compared to
gradient-driven optimization, particularly when optimizing
high-dimensional parameter spaces. For example, the
Nelder-Mead optimization algorithm [39], at the basis of
the CRAB and DCRAB methods [40,41], grows exces-
sively slow when the number of parameters approaches ten
[42] (DCRAB can be viewed as successive CRAB searches
of alternate subspaces). Other methods, such as covariance
matrix adaptation evolution strategies (CMA-ES) [43],
genetic algorithms or the simultaneous perturbationmethod
[44], are somewhat better at handling large parameter
spaces but are still slow to converge compared to gra-
dient-driven methods. When the gradient of the goal
function with respect to the parameterization, ∂ ᾱgðᾱÞ,
can be computed efficiently, gradient-driven optimization
algorithms outperform gradient-free methods by orders of
magnitude (see Appendix A of the Supplemental Material
[35] and references in [34,45]). Thus, gradient-freemethods
fail criterion (iii). In contrast, GOAT is gradient driven, and
can utilize any gradient-driven search algorithm (including
second order methods, such as Newton) and, therefore,
converges quickly, satisfying criterion (iii).
A second class of QOCmethods, such as Krotov [46–48]

and GRAPE [8], derive from a variational formulation of
the QOC task [49], where the Schrödinger equation is
imposed as a constraint. This necessitates propagating an
adjoint operator backward in time from the goal gate, acting
as a Lagrange multiplier. The update rules for the control
fields in both the Krotov and GRAPE methods are defined
in terms of time-local expressions, implying a piecewise
constant (PWC) control ansatz. This presents two types
of problems. First, the PWC ansatz is incompatible with
the low parameter counts needed for subsequent pulse

calibration. Moreover, it does not lend itself to the
imposition of control constraints, such as bandwidth, nor
the freedom to choose a control ansatz. And while work-
arounds have been found for both GRAPE and Krotov
([13,50] and [51,52], respectively), these are nontrivial to
implement. Further, the variational formulation necessitates
a nontrivial rederivation of the control update rule when-
ever a change is made to the goal functional (e.g., a new
penalty term). Thus, GRAPE and Krotov fail criterion
(i) flexibility. In contrast, GOAT, which does not derive
from the variational formulation, does not require back
propagation. It can easily adapt to new goal functions,
utilize an arbitrary control ansatz to produce a simple
calibration of pulses, and impose a wide range of con-
straints, meeting criterion (i). Second, a PWC approxima-
tion of smooth low-bandwidth controls, introduces
significant numerical inaccuracies in the control fields,
and subsequently in the simulated dynamics, as demon-
strated in Appendix B of the Supplemental Material [35]
and references in [53,54]. Thus, GRAPE and Krotov fail
criterion (ii) numerical accuracy. GOAT, which allows
arbitrary piecewise-continuous controls, does not suffer
from this problem.
While somewhat subjective, we believe GOAT to be

uniquely easy to understand and code, with a simple
mathematical structure (application of the chain rule with
modified equations of motion) and compatible with off-the-
shelf tools for gradient-driven search and ODE propagation.
Flux tunable coupler.—We consider the flux tunable

coupler presented in [15], where a 200 ns iSWAP gate was
implemented with a fidelity of 0.982. This system consists
of two transmon qubits coupled to a tunable bus (TB)
resonator. The Hamiltonian reads

H ¼
X2
k¼1

ωka
†
kak þ ωTBðΦÞb†b

þgkða†kbþ b†akÞ − αkj2ih2jk; ð8Þ
where ωk are the frequencies of the qubits, ωTBðΦÞ is the
flux-dependent frequency of the tunable bus, gk are the
coupling qubit-resonator couplings, αk are the qubit anhar-
monicities, and ak, b denote the annihilation operators of
the qubits and the tunable bus, respectively. The depend-
ence of the bus frequency on the modulated flux is

ωTBðΦÞ ¼ ωTB;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cosðπΦ/Φ0Þj
p

; ð9Þ

Φ ¼ Θþ δðtÞ cosðωΦtÞ; ð10Þ
where Φ0 is the flux quantum, δðtÞ is the controlled
amplitude of the flux modulation and ωΦ is tuned to
resonantly couple j01i to j10i.
Optimizing pulses for this system use GOAT’s flexibility

in several ways. First, as the experiment allows for
correction of the single qubit Z rotations in software, we
used a modified goal function that is independent of such
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rotations. See Appendix D of the Supplemental Material
[35] for further details. Then, contrary to [15], we do not
use either the dispersive regime approximation nor the
rotating wave approximation. Rather, the optimization
includes the carrier frequency (see Fig. 1). This implies
a more accurate simulation, and optimal pulses which
require less calibration. Finally, we iteratively reduced the
complexity of the control pulse: starting with a Fourier
parameterization with tens of components, we successively
pruned the low amplitude components and reoptimized, to
reach six frequency components for a 100 ns iSWAP. This
yielded an infidelity of 10−12 in the fully coherent model.
Assuming Markovian noise with T1 ¼ T2 ¼ 40 μs and
thermalization to 25 mK [55], the pulse achieves the
decoherence limit of 99.5% fidelity. It is possible to
improve the fidelity further by two approaches. First, by
shortening the pulse. This, however, requires more complex
pulse shapes, which are harder to calibrate. Second, one can
utilize non-Markovian features of the noise, with dynamic
decoupling or spin-echo dynamics.
Calibration of simple cZ pulses for flux-tunable qubits.—

We consider a line of frequency-tunable qubits [16] with
nearest-neighbor couplings. Define

a¼

0
B@
0 1 0

0 0
ffiffiffi
2

p

0 0 0

1
CA; X¼a†þa; Y¼ iða†−aÞ; N¼a†a:

ð11Þ

H¼
X2
k¼1

ϵkIþqkNkþηkj2ih2jþgk;kþ1YkYkþ1: ð12Þ

Parameters of the bare Hamiltonian are taken from recent
experiments [56]. We implement the control-Z (CZ) gate in

a two tunable-qubits system using one z control per qubit,
with the drive shape parametrized by error functions (erf).
After optimization, we obtain a control signal described by
only 16 parameters. Each control is a sum of two terms

akðtÞ ¼
Ak

4

�
1þ erf

� ffiffiffi
π

p sk
Ak

ðt − t1iÞ
��

× erfc
� ffiffiffi

π
p sk

Ak
ðt − t2iÞ

�
: ð13Þ

A sigmoid function envelops the total control amplitude,
enforcing the limit. Optimization achieves a 30 ns CZ gate
with infidelity of 10−13 when neglecting Markovian effects,
and a coherence-limited pulse when incoherent processes
are introduced. This is 25% faster than the CZ presented in
the Supplemental Material of [57].
Consider the more realistic scenario where some physi-

cal parameters are known only within a few percent. We
simulated calibration by closed-loop optimization of the
optimal drive parameters, to compensate for Hamiltonian
mischaracterizations. The procedure is very similar to Ad-
HOC [19], but requires an order of magnitude fewer fidelity
measurements, thanks to the low number of parameters
characterizing the drive shape. The choice of a gradient-free
algorithm (quasi-Newton instead of Nelder-Mead) reduced
the number of measurements by an additional 10%. In our

(a)

(b)

(c)

FIG. 1. Optimized flux modulation δðtÞ generating an iSWAP in
the flux-tunable coupler of Eqs. (8)–(10). The infidelity is 10−12 in
a fully coherent model and a noise-limited 99.5% with T1 ¼ T2 ¼
40 μs and thermalization to 25 mK [55]. (a) Unconstrained Fourier
pulse, sum of six frequency components. (b) Constraints applied
using sigmoids, in both time (pulse starts and ends smoothly at
zero) and amplitude (limited to 0.3Φ0). (c) Output of waveform
generator, including carrier and dc bias. See Appendix C of the
Supplemental Material [35] for further details.

(a)

(b)

(c)

FIG. 2. Simulation of 300 GOAT pulse calibrations, assuming
inaccurate characterization of system parameters. Fractional error
in the coupling g and anharmonicity η is taken to be normal
distributed, with a standard deviation of 3%. (a) Initial (dotted
lines) and final (solid lines) drive shape for a two tunable-qubits
CZ gate parametrized with error functions using only 16
parameters. Red and blue lines depict the two qubit controls,
a1ðtÞ and a2ðtÞ of Eq. (13). (b) Distribution of the number of
fidelity measurements needed to calibrate the pulse using the
quasi-Newton algorithm. The low pulse parameter count implies
less than 1500 fidelity measurements are needed in most
simulated systems. (c) Distribution of precalibration (blue) and
postcalibration (red) infidelity. Pulses have been calibrated up to
the coherence limit imposed by Markovian processes, 10−3.
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simulation, we considered the coupling g and the anhar-
monicities η as random variables with Gaussian statistics
and a standard deviation of 3%. For each instance, we
applied the gradient-free algorithm for closed-loop calibra-
tion, counting goal function calls, which correspond
to an experimental measurement of gate fidelity. The results
of the simulated calibration are shown in Fig. 2. The key
result is that, for most random instances, only a few
hundred fidelity measurements are required for calibration,
Fig. 2(b), to reach the final fidelity, Fig. 2(c). Ad-HOC
could not be used efficiently in experiments because the
required number of fidelity measurements was on the
order of thousands. GOAT solves this issue by reducing
the number of parameters which, in turn, decreases the
number of fidelity measurements to the point where the
Ad-HOC approach becomes a viable experimental option.
The target infidelity was set at 10−3, below the coherence
limit reachable for these gate durations [55]. Conversely,
around 20% of cases did not reach the 10−3 threshold,
leading to the peak at 1500 fidelity measurements in the
middle plot. Improvements to the gradient-free search
algorithm would allow detecting this behavior early.
Discussion.—We have presented the criteria for good

QOC algorithms: flexibility, accuracy, and speed. Flexibility
requires the algorithm to faithfully model the experiment,
including control capabilities. This ensures that resultant
pulses, once implemented, will produce the desired dynam-
ics. Moreover, it must allow the use of any control ansatz,
so that one may produce pulses described by only a few
parameters, enabling realistic calibration, to bridge the gap
between experiments and a simulated model. Accuracy
insures we do not downgrade model accuracy due to
numerical issues. Speed makes the QOC process practical,
allowing optimization of more accurate models.
We presented a novel optimal control algorithm, GOAT,

based on equations of motion for the gradient of the
propagator with respect to the drive parameters. Surveying
prevailing QOCmethods, we conclude that GOAT is the only
QOC method to satisfy all three criteria. We demonstrated
GOAT’s flexibility by optimizing pulses for two different
systems, using twodifferent ansatz (erf andFourier), applying
amplitude and bandwidth constraints in both cases, achieving
fidelities significantly beyond the current state of the art.
Further, we have shown the feasibility of calibrating GOAT
pulses, enabled by the small number of parameters which
describe them. GOAT’s mathematical formulation is straight-
forward, and does not require backward-propagating adjoint
states or the calculus of variations. It is also extremely simple
to implement. GOAT does not rely on a PWC representation
of bandwidth-limited controls, and therefore, its accuracy is
only limited by how precisely the system is modeled. Finally,
GOAT is fast, being a parallelizable, gradient-driven, opti-
mization method.
This theoretical and numerical advance provides a

significant step toward the application of numerical optimal

control to superconducting quantum computing platforms.
The flexibility in pulse description allows the reduction of
the number of parameters describing the optimized pulses,
reducing the calibration time by an order of magnitude,
making it feasible. To our knowledge, this is the first study
showing that the power of numerical optimal control is
applicable to solid state qubit experiments.
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