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Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer,
melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and
thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a
reliable model of pond geometry does not currently exist. Here we show that a simple model of voids
surrounding randomly sized and placed overlapping circles reproduces the essential features of pond
patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by
comparing, between the model and the aerial photographs of the ponds, two correlation functions which
determine the typical pond size and their connectedness. Using these parameters, the void model robustly
reproduces the ponds’ area-perimeter and area-abundance relationships over more than 6 orders of
magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond
scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we
find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that
the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future
models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.
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Arctic sea ice plays a major role in Arctic climate [1],
ecology [2], and economy. Sea ice’s recent rapid decline is
a hallmark of climate change [3] that global climate models
have systematically underestimated [4]. This is believed to
be largely due to small-scale processes that cannot be
captured accurately by large-scale models [5]. One such
process is the formation of melt ponds on the ice surface
during the summer [6]. Melt ponds absorb significantly
more sunlight than the surrounding ice, making ponded ice
melt faster, creating a positive feedback [7,8]. The central
importance of melt ponds was demonstrated in 2014 by
Schröder et al. [9] who showed that the September sea ice
minimum extent can be accurately predicted solely based
on spring melt pond fraction. Current models of melt ponds
include comprehensive representations of many physical
processes and are capable of reproducing Arctic-scale
spatial distributions of pond coverage [10–13]. However,
their complexity and numerous assumptions reduce their
ability to provide a fundamental understanding of pond
evolution, and call into question their applicability in a
changing climate.
Ponds typically evolve through several stages that are

controlled by ice permeability [14,15]. Early in the season
(typically late spring and early summer), ice is imper-
meable so that melt ponds can exist above sea level and
cover a large portion of the ice. Later in the season, as ice
permeability increases, the ponds drain to the ocean so that

remaining ponds correspond to regions of sea ice that are
below sea level. After drainage, ponds have a typical length
scale of several meters, likely determined by the scale of
winter snow dunes [16], and are often connected by channels
that form during drainage. This post-drainage stage is
typically the longest part of melt pond evolution. An aerial
photograph of drained melt ponds is shown in Fig. 1(a).
Melt pond geometry has been shown to control the

strength of lateral melting of ice by pond water [17], to
impact the pattern of floe breakup [18], and to set the
landscape of available light for the organisms living beneath
the ice [19]. Several critical observations have previously
been made about pond geometry. Hohenegger et al. [20]
showed that the fractal dimension, D, of late-summer melt
ponds, which characterizes their area-perimeter relationship
(P ∝ AD=2), transitions fromD ≈ 1 for small ponds toD ≈ 2

for large ponds. The size (area) distribution ofmelt ponds has
also been shown to be a power law [21]. Although several
models reproduce these observations [22,23], a basic under-
standing of the reason for this behavior is lacking. In this
Letter we will explain both of these observations using a
simple geometric model without invoking any assumptions
about the dynamics that govern the melt pond evolution.
Our model is a representation of post-drainage melt

ponds. It consists of randomly placing circles of varying
size on a plane and allowing them to overlap. The area
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covered by circles in our model represents ice, while melt
ponds are represented by the voids left between the circles
[Fig. 1(c)]. Similar models are sometimes used to study
transport properties in inhomogeneous materials, and are
known as “Swiss cheese” models [24]. Physically, the
circles can be thought of as regions where snow dunes used
to be in the winter, and melt ponds fill in the space around
them. Circle centers are placed with equal probability
throughout the domain. Individual circles have radii r,
randomly drawn from an exponential probability distribu-
tion pðrÞ ¼ ð1=r0Þe−r=r0 , where r0 is the mean circle radius
and defines the physical scale for the model. We chose this
probability distribution mainly due to its simple form, but
all of our main conclusions are robust to using other
distributions (see Supplemental Material [25], Sec. S4).
After choosing r0, the model is fully specified by choosing
the fraction of the surface coveredbyvoidsρ. To compare our
model with melt pond data, we analyzed hundreds of
photographs of sea ice taken during helicopter flights on
multiple dates during the SHEBA mission of 1998 and the
HOTRAX mission of 2005, and separated them into ice
and pond categories using a machine learning algorithm
[Figs. 1(a) and 1(b), Supplemental Material [25], Sec. S1].
In order to facilitate comparison with pond images, we
implemented the void model on a grid with the same
resolution and size as the pond images.
We begin the comparison by choosing the model param-

eters r0 and ρ. To this end, we define two functions—the
two-point correlation function CðlÞ and a cluster correlation
function gðlÞ, and compare them for pond images and the
model. A two-point correlation function measures the
probability that two points separated by a distance l are
both located on some pond, while a cluster correlation
function measures the probability that they are both located
on the samepond.We first estimate r0 usingCðlÞ, becausewe
can define it to be largely insensitive to changes in ρ (see
below).Oncewehave calibrated r0 bymatchingCðlÞ, we can
choose ρ using gðlÞ.
For two points, x and y, separated by a distance l, the

two-point correlation function can be defined as

CðlÞ ¼ hzðxÞzðyÞi − ρ2

ρð1 − ρÞ ; ð1Þ

where zðxÞ ¼ 1 if a point x is located on a pond, and
zðxÞ ¼ 0 otherwise, and h…i represents averaging over
different points and over different images. Subtracting ρ2

and dividing by ρð1 − ρÞ constrains CðlÞ to vary between
1 and 0, and makes it insensitive to changes in ρ (see
Supplemental Material [25], Sec. S2). The two-point
correlation function determines a typical length scale of
variability in melt pond coverage.
PlottingCðlÞ for melt ponds on a semilog plot reveals that

it is approximately a sum of two exponentials [Fig. 2(a)].
Therefore, there are two characteristic length scales in melt
pond images—a small length scale comparable to the size of
individual ponds and a large length scale that is comparable
to the size of the image. The large length scale corresponds to
variability of pond fraction due to large-scale ice features
such as ridges or rafted ice floes. To focus on melt pond
features, we have removed the contribution to CðlÞ from
large scale ice features by subtracting a fit to an exponential
of CðlÞ for l > 25 m. We varied this threshold, but found
little difference in the results. After subtracting the fit, we
normalized the remainder so that Cð0Þ ¼ 1 [inset of
Fig. 2(a)]. We show the resulting functions for all of the
available dates and compare them to the void model in
Fig. 2(b). Ponds of all dates show similarCðlÞ dropping by a
factor of e after roughly 3.3 m. We found that this is well
reproduced by the void model using r0 ¼ 1.8 m (see
Supplemental Material [25], Sec. S2). The fact that the void
model reproduces the shape of the two-point correlation
function suggests that our assumption of randomly placing
the circles is reasonable.
Next, we determine ρ. With this parameter, we wish to

capture the pond geometric features such as the pond size
distribution and the fractal dimension, rather than simply
the pond coverage. For this reason, we do not set ρ equal to
the pond coverage fraction of melt pond images, but instead
we use the cluster correlation function to determine ρ.
Essentially, the cluster correlation function gðlÞ measures
the probability that two points separated by a distance l
belong to the same finite pond. However, there are some
technical subtleties in how we define gðlÞ, and we give a
precise definition in the SupplementalMaterial [25], Sec. S2.

FIG. 1. (a) A photograph of melt ponds taken on August 7, 1998 during the SHEBA mission. (b) A binarized version of the same
image. (c) A void model with a typical circle radius of r0 ¼ 1.8 m, and a coverage fraction of ρ ¼ 0.31.
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In the model, in the limit of infinite domain size, there
exists a well-defined coverage fraction ρc, the “percolation
threshold,” above which infinite clusters exist, and below
which there is a maximum cluster size. The cluster corre-
lation function in the void model sensitively depends on the
deviation of the pond fraction from this percolation thresh-
old, jρ − ρcj (see Supplemental Material [25], Sec. S2).
Below and above the percolation threshold, the cluster
correlation function is greater than zero up to a certain
distance, after which it exponentially decreases. As the
coverage fraction approaches the percolation threshold,
this cutoff length grows, and sufficiently close to the thresh-
old it is set by the image size. The location of the exponential
cutoff quantifies the typical size of the largest finite con-
nected pond cluster.We discuss the functional form of gðlÞ in
detail in the Supplemental Material [25], Sec. S6.
Narrow connections between ponds are often missed by

the image processing algorithm so that for many dates gðlÞ
depends on the artificial threshold parameter used in the
machine learning algorithm to separate ice from ponds (see
Supplemental Material [25], Sec. S1, for details). The only
dates after pond drainage for which gðlÞ is stable against
changes in this threshold are August 7 of 1998 and August
14 of 2005. In Fig. 2(c), we compare the cluster correlation
function for the void model and data on those dates.
Remarkably, the pond clusters for both dates appear to
be organized very near the percolation threshold, as
indicated by the fact that the length scale of exponential
cutoff in gðlÞ is set by the image size. In Fig. 2(c) we use
ρ ¼ 0.31 to match the pond data, and the difference
between gðlÞ for the ponds from 1998 and ponds from
2005 is solely due to a different image size. In fact, using

any ρ from a range 0.28 < ρ < 0.31 provides an equally
good fit to the data, which indicates that within this entire
range the size of the largest pond is determined by the
image size. To independently confirm that ponds are well
described by the void model near the percolation threshold,
we ran the void model, 50 times at multiple values of ρ, and
found the probability of forming a cluster that spans at least
one dimension of the image [inset of Fig. 2(c)]. We found
that this probability increases from 0 to 1 between ρ ¼ 0.28
and ρ ¼ 0.31, which closely matches the range of coverage
fractions that fit the pond gðlÞ. We note that although we
chose ρ to match the cluster structure between the model
and the data, the value we found agrees reasonably well with
the pond coverage fraction on those dates (30%� 5% on
August 7 of 1998, and around 40%� 5% on August 14 of
2005). We discuss the relationship between the pond cover-
age fraction and pond geometry in detail in the Supplemental
Material [25], Sec. S6.
It is remarkable that the properties of ponds from 1998

and 2005, which likely developed under very different
environmental conditions, are so similar: the correlation
functions for both years are well fit by the void model using
the same r0 and ρ. This is particularly surprising since sea
ice during the 1998 mission had a large proportion of
multiyear ice, whereas ice during the 2005 mission was
predominantly first-year ice.
Having chosen r0 and ρ, we can proceed to explain the

observations of pond fractal dimension and size distribu-
tion. Following Hohenegger et al. [20], we define the
fractal dimension of the pond boundary as the exponent that
relates the area and the perimeter of the pond, P ∝ AD=2.

FIG. 2. (a) An example of the two-point correlation function CðlÞ for melt ponds shown on a semilog plot. Dashed black lines
represent fits to a small length scale exponential and a large length scale exponential. The inset shows CðlÞ before and after a fit to the
large length scale exponential has been subtracted. (b) A comparison between the two-point correlation function for ponds from 1998
and 2005 (circles), and the void model (dashed line). Ponds on all dates show a similar scale matched by the void model using
r0 ¼ 1.8 m. (c) A comparison between the cluster correlation function gðlÞ for August 7, 1998 (red circles), August 14, 2005 (yellow
circles), and the void model using the same r0 as in panel (b) (black dashed lines). Both model lines use ρ ¼ 0.31, and the difference
between them is due only to differing simulated image sizes. The image size for 1998 is indicated by a red arrow and the image size for
2005 is indicated by a yellow arrow. The fact that the exponential cutoff is set by the image size indicates that the ponds are roughly at the
percolation threshold. The inset shows an independent estimation of the percolation threshold. Red points show the probability of
finding a spanning cluster in the void model implemented on a grid the same size and resolution as the SHEBA images. The probability
of finding a spanning cluster increases from 0 to 1 between ρ ¼ 0.28 and ρ ¼ 0.31.
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The fractal dimension can vary between the fundamental
limits of D ¼ 1 for regular shapes such as circles to D ¼ 2

for space filling or linear shapes. We findD as a function of
A by fitting a curve to the area-perimeter data. We explain
the details of this fitting procedure in the Supplemental
Material [25], Sec. S3.
In Fig. 3(a) we findD as a function of A for pond data on

all dates from the summer of 1998 after pond drainage (red
curves) and 2005 (yellow curve). Our results are consistent
with Hohenegger et al. [20], with the pond fractal dimen-
sion transitioning fromD ≈ 1 toD ≈ 2 at Ac ≈ 100 m2, and
a transition range spanning roughly 2 orders of magnitude.
Without any tuning other than choosing r0 and ρ using the
correlation functions, the void model is able to match the
observed transition in pond fractal dimension nearly
perfectly [Fig. 3(a), black dashed curve].
In the Supplemental Material [25], Sec. S7, we give an

argument that a transition from D < 2 toD ≈ 2 is a generic
consequence of individual objects connecting and, there-
fore, cannot be used as strong support for any particular
physical model of melt ponds. On the other hand, matching
the fractal transition scale and the transition range are
nontrivial, and cannot be reproduced by an arbitrary model
of randomly connecting objects (see Supplemental Material
[25], Sec. S9). At small sizes, the void model predicts a
dimension slightly larger than 1, likely corresponding to the
fact that small voids are not necessarily simple smooth
shapes. It is possible that small-scale physical processes in
real ponds, such as erosion of pond walls, are responsible
for smoothing small ponds into more circular shapes with
D ≈ 1.
Finally, we compare the pond size distribution with the

void model in Fig. 3(b). Again as a result of sensitivity to
the threshold parameter in the machine learning algorithm,
we only use pond data for August 7th of 1998 and August
14th of 2005. At scales larger than roughly 10 m2 the pond

size distribution follows an approximate power law, in
agreement with previous findings. The power law behavior
is particularly clear for ponds from 1998, and the power
law exponent (approximately 1.8) is slightly larger than
previously found [21]. Using the same r0 and ρ as before,
the void model reproduces the pond size distribution over
the entire range of observations, more than 6 orders of
magnitude. This matching is highly robust: the void model
matches the pond size distribution even at the smallest
scales regardless of details such as the circle radius
distribution or the shape of the objects placed randomly
(see Supplemental Material [25], Sec. S4).
We have shown that a simple model of voids surround-

ing overlapping circles captures key geometric patterns
of Arctic melt ponds with high fidelity and robustness,
with only two parameters that can be chosen naturally by
comparing the model and the data. Our model is purely
geometric, and can therefore be used as a benchmark
against which to test any physical model. This work shows
that much of melt pond geometry can be understood
simply by assuming that melt ponds are placed randomly
and have a typical size. Even though many models will
reproduce the same universal features, our model is
special in that it captures quantitative details of melt pond
geometry beyond what an arbitrary model of connecting
objects is capable of doing. Our work raises two critical
questions about melt pond physics that must be answered.
First, why does the pond scale appear to be so robust for
ponds evolving under differing environmental conditions,
and, second, why do ponds seem to be organized near
the percolation threshold? The answer to the second
question may be particularly interesting, as it may point
to self-organized critical behavior in melt ponds, and may
suggest that the pond coverage fraction is more con-
strained than previously thought. Answering these ques-
tions may yield deeper insight into melt pond physics

FIG. 3. (a) A comparison between the fractal dimension of pond boundaries for different dates after pond drainage from 1998 (red
curves), 2005 (yellow curve), and the void model with r0 and ρ the same as in Fig 2 (black dashed curve). Examples of ponds (below the
curve) and voids (above the curve) of various sizes are also shown. (b) Size distribution for ponds on August 7, 1998 (red dots), ponds on
August 14, 2005 (yellow dots), and the void model (black dashed line).
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and allow for a better representation of this important
process in global climate models.
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