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It is shown that the classical commensurability phenomena in weakly modulated two-dimensional
electron systems is a manifestation of the intrinsic properties of the correlation functions describing a
homogeneous electron gas in a magnetic field. The theory demonstrates the importance for consideration of
nonlocal response and removes the gap between classical and quantum approaches to magnetotransport in

such systems.
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Magnetotransport properties of two-dimensional (2D)
electrons in the presence of spatially varying weak electro-
static potential energy U, or magnetic field 6B, have been
extensively studied in connection with the problem of
commensurability phenomena, in particular, Weiss oscil-
lations, in periodically modulated systems [1-48]. The
Weiss oscillations of the resistance of a unidirectionally
modulated electron gas appear because of periodic depend-
ence of the drift velocity, averaged over the path of
cyclotron rotation, on the ratio of cyclotron radius R to
modulation period a. Similar commensurability oscilla-
tions existing in the case of 2D (bidirectional) modulation
have the same origin. Whereas the classical nature of Weiss
oscillations was established [2] very soon after their
discovery, the vast majority of theoretical works devoted
to this phenomenon are based on application of the
quantum linear response (Kubo) theory to calculation of
conductivity. Within this approach, the resistance oscilla-
tions are explained in terms of modulation-induced trans-
formation of Landau levels into one-dimensional subbands
whose bandwidth oscillates as a function of the subband
number. The classical analog of the Landau bandwidth is
the average of the modulation energy over the path of
cyclotron rotation [4,7]. However, the link between quan-
tum and classical approaches to the problem is still
incomplete. In the quantum linear response formalism,
the oscillating dependence of conductivity appears as a
result of direct influence of the modulation on the electron
energy spectrum, so the classical origin of the commen-
surability phenomena is concealed. More important, the
results obtained from the linear response theory deviate
from the classical Boltzmann equation results [2,18,19] in
the region R < a corresponding to the high-field part of the
oscillations and subsequent transition to the adiabatic
regime.

In this Letter, the Kubo formalism is applied for
calculation of the nonlocal conductivity o(r,r’) of weakly
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modulated electron gas. It is shown that this approach is
free from the difficulties mentioned above. In the regime of
classically strong magnetic fields, relevant for observation
of commensurability phenomena, the conductivity tensor is
subdivided into the local part that describes the Drude
response and the nonlocal one, entirely responsible for the
effect of modulation. The nonlocal part is proportional to a
product of the field of potential gradients, V,U,V, Uy, or
varying magnetic fields, 6B,0B,, by the spatial correlation
functions of the homogeneous (unmodulated) 2D electron
gas. Remarkably, the correlation functions already contain
oscillating dependence on the magnetic field because they
account for the cyclotron motion. This observation leads to
a general point of view on the classical commensurability
phenomena as manifestations of intrinsic properties of
homogeneous 2D systems in the presence of modulation.
The theory is valid for arbitrary weak and classically
smooth U, and 6B, and is applied as well for description
of the magnetoresistance due to random modulation.
General formalism.—Throughout the Letter, the
Planck’s constant 7 is set at unity. A parabolic spectrum
of 2D electrons is assumed, and the Zeeman splitting is
neglected. The Hamiltonian of noninteracting electrons in a
perpendicular magnetic field B, = (0,0, B + 6B,) has a
standard form, H = Zjl:lrj, H.=mV:/2+V, +U,,
where ¥, = [-iV — (e/c)(A, + 5A,)]/m is the velocity
operator, r is the 2D coordinate, m is the effective mass
of electron, A, and A, are the vector potentials describing
the uniform and the modulating magnetic fields, respec-
tively. Next, V. is a random impurity potential varying on a
scale much smaller than the cyclotron radius R = vp/w,,

where vy = \/2¢r/m is the Fermi velocity expressed
through the chemical potential ¢ and w. = |e|B/mc is
the cyclotron frequency. Finally, U, is a potential varying

on a scale much larger than the magnetic length 7 =
\/¢/|e|B with the amplitude much smaller than &. Similar
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conditions of smoothness and smallness apply for magnetic
modulation. It is assumed that U, and 6B, have zero
average over the sample area.

The Kubo-Greenwood formula for the steady-state non-
local conductivity tensor is written in the exact eigenstate
representation as follows:

(&'|T¢15)(8|T518) (fe, = fey )
Ky Z id)(es — €s)

where 1, = ¢3° {¥,,8(r; — )} is the operator of current
density, { } denotes a symmetrized product, A — +0, S is
the normalization area, J is the eigenstate index, and f, is
the equilibrium Fermi distribution. It is convenient to
transform Eq. (1) by using the operator identity

(1)

Gaﬂ r, l’ g —
55 s & —

¥, = £2eVU, — {9,,6B,}/B — io;'¢[¥,, H], (2)

where U, = V. + U, is the total potential and € is the
antisymmetric unit matrix in the Cartesian 2D coordinate
space. After substituting Eq. (2) into Eq. (1), the last term in
Eq. (2) gives the classical Hall conductivity, while the rest
of the contributions come from the first two terms.

In the case of purely potential modulation, 6B = 0, the
dissipative part of the conductivity is

o4p(r.¥) = 2me* e, €4 / dg( ?‘Q)
X (V) (VyUp) Ao (r. X) A (P 1)), (3)

where the angular brackets define the average over the
random potential, and A, (r,r) = (27i)7'[GA(r,¥) —
GR(r,r’)] is the spectral function in the coordinate repre-
sentation, expressed through the nonaveraged Green’s
functions G* (s = R, A denotes the retarded and the
advanced ones). Since the case of degenerate electron
gas is assumed, the energy ¢ stands in a narrow interval
around the Fermi level and can be replaced by e if the
correlation function in Eq. (3) slowly varies with energy, in
particular, in the classical transport regime. Evaluating
Eq. (3) within the accuracy up to the first power in the
random potential correlator w(g) defined as a Fourier
transform of the correlation function (V,V,) leads to

O'gﬂ ~ 6&2 + 0'(2)

two contributions: of *
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(5)
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where A, (r,r') = (A.(r,r')) is the averaged spectral
function. The first contribution describes the conductivity
due to the presence of smooth potential gradients. The
second one is the leading term in the expansion of the
conductivity in powers of the ratio of the scattering rate to
cyclotron frequency. Keeping only these contributions is
sufficient in the case of classically strong magnetic fields,
(w,7y)? > 1, where 7, is the transport time.

The difference between the present technique and
previous applications of the Kubo formalism to the problem
is a consideration of nonlocal response instead of the local
one, which is necessary for correct evaluation of the
conductivity, and the application of the identity Eq. (2),
which separates the drift-induced (") and diffusion-induced
6 contributions and removes the necessity to specify
eigenstates and Green’s functions at the early stage of
calculations.

To find 6(!), one needs to calculate the pair correlation
function in Eq. (4), which is determined, in the Born
approximation, by the particle-hole ladder series. In the case
of arbitrary w(q), the problem cannot be solved analytically
even in the classical limit. Therefore, the case of white
noise random potential is assumed when w(q) is replaced
by a constant. Introducing the correlator C5*(r,r') =
w(Gs(r,¥)GS (r',r)) and applying a standard technique of
summation leads to the integral equation C¥ (r,r')=
K (r,x')+ [dr K (r,r))Cs (r,,r), where K3 (r,1') =
wG:(r,r')GS (¥, r) is the “bare” correlator expressed
through the averaged Green’s functions. It is convenient to
rewrite this equation for the double Fourier transforms of C
and K:

Clad) =Kla.a)+ [ S8k
(27)
Since only the terms with s # s are important, the repeating s
indices are omitted here and below. The correlators C and K
are essentially different. While K, (r,r’) describes correla-
tions on the 2R scale, C,(r,r’) has no definite correlation
length and logarithmically depends on |r —r/|. This is a
consequence of the diffusion-pole divergence of C,(q, q’), as
in the limit of small g Eq. (6) can be reduced to a diffusion
equation. The long-range behavior of correlations is a
general property topologically dictated by the dimensionality
2 [49,50].

In contrast to 6!, the contribution 6® can be treated
locally, because it contains the exponential factor el (r=r)
where q has meaning of the momentum transferred in the
scattering of electrons by the potential V. Since ¢ is
comparable to the Fermi momentum (except for the
scattering on very small angles), the correlation length is
much smaller than both R and the modulation length, and it
is sufficient to consider the local conductivity,

q.91)C.(q:.q").  (6)

2)

afﬂ)(r) = /dAragj) (r+ Ar/2,r — Ar/2). (7)
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Classical conductivity—The contribution ¢(!) is already
proportional to the squared gradient of the smooth potential
U,. In the classical case, when the Landau quantization is
neglected, accounting for U, in the Green’s functions
entering C, leads to an expansion in powers of small
parameters U,/er and VU.R/ep. Therefore, to calculate
o1 in the classical limit, it is sufficient to employ the
Green’s functions of a homogeneous system:

iB(r.r') © 10 (| Ap[2/2£2) e~ A1 /4
GRA(r,Y) = ‘ 7] Z wllart/ ).e . (8)
2nt” £ e—eyti/2t

where Ar =r —1r’, the sum is taken over the Landau
level numbers, L¥ is the Laguerre polynomial, ey =
w.(N 4 1/2) is the Landau level spectrum, 7 = 1/mw is
the scattering time, and O(r,r') = (e/c) [5dr| - A, .
Because of the homogeneity, Eq. (6) is solved analytically:

Cs(q7 q/) = Ceq(Zﬂ)zé(q _q/)v Ceq = qu/(l _K£q>7 (9)

where

W (CDYN LYY (B)LY N (B)

<4 Dpg? e (e—ey+1i/27)(e — ey —i/27)

K

(10)

and f = ¢*¢*/2. The classical limit corresponds to treat-
ment of the Landau level numbers as continuous variables
and to application of the asymptotic form of LY () at large
N. With € = ¢ and ¢ < muvy, this leads to

= Ji(qR)
K., ~K, = —_— 11
4 q Z 1 + (nw,7)? (11)

n=—0o

where J, is the Bessel function. If (w.7)>> 1, it is
sufficient to retain a term with n = 0. As a result,

Ceq=Cy = J5(qR)/[1 = J5(qR)] (12)
and

2
W) e ) = _&F , dql/dqz/dq
Top (1:T) nmw%eweﬂy /(27[)2 (2rz)? ) (2x)?

U“l] U‘lz‘](z)(qR)
1-J5(gR)
(13)

i(q—q;)r ,i(q—q)1r
X e(q ql) e(qZ q) quq2}/,

where U, is the Fourier transform of U,.

Using the Green’s functions (8) for calculations of the
local contribution aa?(r) in the classical limit gives the
isotropic Drude conductivity at (w.7)? > 1:

2
2 € Ny
Opp = aﬁmmz;, (14)
c

where n; is the electron density. Consideration of higher-
order terms (not included in ¢) leads to an additional
contribution —afﬁ) /|1 + (w.7)?] that complements the con-
ductivity to the full Drude form. A generalization to the
case of arbitrary w(q) is straightforward and results in a
substitution of the transport time 7, in place of 7. The effect
of U, on ¢?) leads to contributions of the order (w,7) 26!
and, therefore, is neglected.

Magnetic modulation.—If the modulation 0B, instead of

U, is present, o'!) of Eq. (4) is replaced by

W ,0B5By of,
oy (T,1') —Znezﬁ de| — 3

€

X (TralrpAe (1, 0) A (1)), (15)

where V, = [—ivd/0r — (e/c)A,]/m is a differential oper-
ator with v = 1/2 (v = —1/2) when acting on the first
(second) coordinate variable of the Green’s functions. The
response is determined by the correlator M (r,r') =

W{Dya Ty p G (r, )G (', r)) with s # 5"

MP (r.) = MP (e.) + / dr, / dtypK o (r.T1)

X [6(r) =13) + Cp(ry.12) | TppK, (r2.7),  (16)

where M?ﬂ(r,r’):wz”)mijr/ﬂGg(r,r’)Gg'(r’,r). In the
classical case, using Green’s functions of Eq. (8) and
C.y of Eq. (12), one gets the expression for Fourier

transform of M (r,v') at & = ey and g < mvp:

9,49y Jz(l]R)
M"ﬁze €5, =L 2 1 .
4 ar=pr q° - J%(qR)

(17)

Therefore, 0&1} (r,r’) of Eq. (15) can be written in the form of

Eq. (13), when the latter is modified by the substitution
01,92 U-q,Uq, J5(aR) = 4,q,0B_q,8Bq,(er/B)*J3(qR)/
(qR/2)%.

Periodic modulation.—In the case of a periodic U, or
0B,, the problem becomes macroscopically homogeneous
and described by the conductivity tensor

1
oo = & / dr / At (r. 1), (18)

which can be also viewed as the average of the local
conductivity over the elementary cell of modulation lattice.
Application of Eq. (18) to Eq. (13) gives, for potential and
magnetic modulation, respectively,
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e’ngt
o) =1 [ aq - 9)

with € = Zk,,kz‘”kl,k2|25(q - k1Q = k,Q,), where k
and k, are integers, Q; and Q, are the Bravais vectors
of the reciprocal lattice, and u; 4, are the Fourier coef-
ficients of the relative modulation strength, u(r) = U,/¢ep
for the potential modulation and u(r) = 6B,/B for the
magnetic one. For harmonic unidirectional modulation,
u(r) =ncos(Qx), the vectors are Q; = (Q,0) and
Q, = (0,0), while nonzero coefficients are u; g = u_; o =

n/2. Thus, only the component (;Sy) survives, leading to the

resistivity p§52 zow /0%1, where oy is the classical Hall

conductivity. This contribution is identified with the Weiss
oscillations term, in full agreement with the results of
theories based on the Boltzmann equation [2,18,19].
Previous theories based on the Kubo formula for local
conductivity miss the term J§ in the denominator. This

&eayeﬂy’qy‘h’ { (qR)z‘](z)(qR)
24> 1 - J5(qR) | 473(qR)

would occur if the correlators C, and Mfl’ﬁ were replaced

by the bare correlators K, and Mgﬁ . Such an approxima-
tion is justified at gR > 1, when J?(¢R) =~ (2/zqR) x
cos?(gR — In/2 — n/4). In the general case of anharmonic
2D modulation, Eq. (19) gives a superposition of Weiss
oscillations with different q in both p,, and p,, [9]. In the

adiabatic limit, gR < 1, p(") « B? in agreement with the
experiment [10].

Random modulation.—In the case of weak modulation
by random potential or magnetic field, the problem is again
macroscopically homogeneous. The current density aver-
aged over a large area is approximately related to the
averaged driving electric field by the local Ohm’s law with
the conductivity tensor of Eq. (18), averaged over the
random modulation distribution. This approximation is
valid because of the assumed weakness of modulation,
while in the general case the problem of linear response in
inhomogeneous media remains very complicated even
in the local formulation [51]. The averaging of aalﬁ written
in the form of Eq. (13) is equivalent to a substitution
U_g, g, = S8, 4, W(q1), Where W(q) is the Fourier trans-
form of the correlator (u(0)u(r)). This leads to the isotropic
conductivity

e’ng [odg qW(q) (CIR)ZJ(z)(qR>
) = _47m\4)
1 /0 { - 0

m 871 -J3(qR) | 472(¢R)

The function W(q) is expected to decrease with g on the scale
of inverse mean modulation length ry!'. For example,
W(q) « e~ in the case of remote ionized impurity poten-
tial relevant for 2D electrons in high-mobility heterostruc-
tures. According to Eq. (20), in the adiabatic limit R < r;
one has p(") « B? for both types of modulation, while at

R > ry p" « B for the potential modulation and p!) « B3

for the magnetic one. Though both V. and u(r) are random,
the problem studied here is not equivalent to the problem of
electron motion in the presence of two kinds of scatterers, the
short-ranged and the long-ranged ones. Indeed, the effect of
modulation accounted in o) is electron drift rather than
scattering-assisted diffusion, while the diffusion occurs due
to the potential V.. The positive magnetoresistance described
above is a consequence of the drift motion (although the drift
along closed contours is also known to be a cause of
localization, which cannot be accounted within the Born
approximation). A different model of two-component dis-
order [52] can lead to a negative magnetoresistance.
Finally, one should discuss possible effects of electron-
electron (Coulomb) interaction on the magnetoresistance of
modulated 2D electron gas. Although this interaction
conserves the total momentum of electrons, it does con-
tribute to the Green’s functions, modifying the energy
spectrum and, consequently, the conductivity. The com-
bined effect of the periodic modulation and the Coulomb
interaction is essential in strong magnetic fields, when the
interaction changes the shape of the Shubnikov—de Haas
oscillations [53,54]. Next, the interaction-induced correc-
tion to conductivity [55] generates oscillations in p,, [56],
which are not related to the Landau quantization and,
therefore, are important as well in the classical region of
fields studied in this Letter. Apart from that, the interaction-
induced imaginary part of self-energy in the Green’s
functions, which can be described by the temperature-
dependent inelastic scattering time 7;,, leads to a cutoff of
the diffusion pole in the correlator C,. As a result, one

should expect a suppression of the conductivity ¢(!) when
the modulation length (period) increases and becomes
comparable to the diffusion length I, = \/7;,D, where D =
R? /27 is the diffusion coefficient. Since /, > R, owing to
the assumed 7;, > 7 at low temperatures, this effect may
influence the resistance in the adiabatic limit only.

In summary, the problem of magnetotransport in modu-
lated 2D electron systems requires consideration of non-
local response. The classical commensurability phenomena
are described as a result of mapping of the modulation
structure onto the spatial correlation pattern of a homo-
geneous electron system. The correlation functions respon-
sible for potential and magnetic modulation in the regime
of classically strong magnetic fields [Eqgs. (12) and (17)]
depend only on the cyclotron radius. A random modulation
leads to a positive magnetoresistance that is sensitive to the
modulation type until the adiabatic limit is reached. It
remains a question whether similar conclusions apply to 2D
systems with Dirac band spectrum such as graphene and
related materials.
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