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It is shown that the classical commensurability phenomena in weakly modulated two-dimensional
electron systems is a manifestation of the intrinsic properties of the correlation functions describing a
homogeneous electron gas in a magnetic field. The theory demonstrates the importance for consideration of
nonlocal response and removes the gap between classical and quantum approaches to magnetotransport in
such systems.
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Magnetotransport properties of two-dimensional (2D)
electrons in the presence of spatially varying weak electro-
static potential energy Ur or magnetic field δBr have been
extensively studied in connection with the problem of
commensurability phenomena, in particular, Weiss oscil-
lations, in periodically modulated systems [1–48]. The
Weiss oscillations of the resistance of a unidirectionally
modulated electron gas appear because of periodic depend-
ence of the drift velocity, averaged over the path of
cyclotron rotation, on the ratio of cyclotron radius R to
modulation period a. Similar commensurability oscilla-
tions existing in the case of 2D (bidirectional) modulation
have the same origin. Whereas the classical nature of Weiss
oscillations was established [2] very soon after their
discovery, the vast majority of theoretical works devoted
to this phenomenon are based on application of the
quantum linear response (Kubo) theory to calculation of
conductivity. Within this approach, the resistance oscilla-
tions are explained in terms of modulation-induced trans-
formation of Landau levels into one-dimensional subbands
whose bandwidth oscillates as a function of the subband
number. The classical analog of the Landau bandwidth is
the average of the modulation energy over the path of
cyclotron rotation [4,7]. However, the link between quan-
tum and classical approaches to the problem is still
incomplete. In the quantum linear response formalism,
the oscillating dependence of conductivity appears as a
result of direct influence of the modulation on the electron
energy spectrum, so the classical origin of the commen-
surability phenomena is concealed. More important, the
results obtained from the linear response theory deviate
from the classical Boltzmann equation results [2,18,19] in
the region R≲ a corresponding to the high-field part of the
oscillations and subsequent transition to the adiabatic
regime.
In this Letter, the Kubo formalism is applied for

calculation of the nonlocal conductivity σðr; r0Þ of weakly

modulated electron gas. It is shown that this approach is
free from the difficulties mentioned above. In the regime of
classically strong magnetic fields, relevant for observation
of commensurability phenomena, the conductivity tensor is
subdivided into the local part that describes the Drude
response and the nonlocal one, entirely responsible for the
effect of modulation. The nonlocal part is proportional to a
product of the field of potential gradients, ∇γUr∇γ0Ur0 , or
varying magnetic fields, δBrδBr0 , by the spatial correlation
functions of the homogeneous (unmodulated) 2D electron
gas. Remarkably, the correlation functions already contain
oscillating dependence on the magnetic field because they
account for the cyclotron motion. This observation leads to
a general point of view on the classical commensurability
phenomena as manifestations of intrinsic properties of
homogeneous 2D systems in the presence of modulation.
The theory is valid for arbitrary weak and classically
smooth Ur and δBr, and is applied as well for description
of the magnetoresistance due to random modulation.
General formalism.—Throughout the Letter, the

Planck’s constant ℏ is set at unity. A parabolic spectrum
of 2D electrons is assumed, and the Zeeman splitting is
neglected. The Hamiltonian of noninteracting electrons in a
perpendicular magnetic field Br ¼ ð0; 0; Bþ δBrÞ has a
standard form, Ĥ ¼ P

jĤrj , Ĥr ¼ mv̂2r=2þ Vr þUr,
where v̂r ¼ ½−i∇ − ðe=cÞðAr þ δArÞ�=m is the velocity
operator, r is the 2D coordinate, m is the effective mass
of electron, Ar and δAr are the vector potentials describing
the uniform and the modulating magnetic fields, respec-
tively. Next, Vr is a random impurity potential varying on a
scale much smaller than the cyclotron radius R ¼ vF=ωc,
where vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εF=m
p

is the Fermi velocity expressed
through the chemical potential εF and ωc ¼ jejB=mc is
the cyclotron frequency. Finally, Ur is a potential varying
on a scale much larger than the magnetic length l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
c=jejBp

with the amplitude much smaller than εF. Similar
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conditions of smoothness and smallness apply for magnetic
modulation. It is assumed that Ur and δBr have zero
average over the sample area.
The Kubo-Greenwood formula for the steady-state non-

local conductivity tensor is written in the exact eigenstate
representation as follows:

σαβðr; r0Þ ¼
i
S2

X
δδ0

hδ0jÎαr jδihδjÎβr0 jδ0iðfεδ − fεδ0 Þ
ðεδ − εδ0 − iλÞðεδ − εδ0 Þ

; ð1Þ

where Îr ¼ e
P

jfv̂rj ; δðrj − rÞg is the operator of current
density, f; g denotes a symmetrized product, λ → þ0, S is
the normalization area, δ is the eigenstate index, and fε is
the equilibrium Fermi distribution. It is convenient to
transform Eq. (1) by using the operator identity

v̂r ¼ l2ϵ̂∇Ur − fv̂r; δBrg=B − iω−1
c ϵ̂½v̂r; Ĥr�; ð2Þ

where Ur ¼ Vr þUr is the total potential and ϵ̂ is the
antisymmetric unit matrix in the Cartesian 2D coordinate
space. After substituting Eq. (2) into Eq. (1), the last term in
Eq. (2) gives the classical Hall conductivity, while the rest
of the contributions come from the first two terms.
In the case of purely potential modulation, δB ¼ 0, the

dissipative part of the conductivity is

σdαβðr; r0Þ ¼ 2πe2l4ϵαγϵβγ0
Z

dε

�
−
∂fε
∂ε

�

× hð∇γUrÞð∇γ0Ur0 ÞAεðr; r0ÞAεðr0; rÞi; ð3Þ
where the angular brackets define the average over the
random potential, and Aεðr; r0Þ ¼ ð2πiÞ−1½GA

ε ðr; r0Þ −
GR
ε ðr; r0Þ� is the spectral function in the coordinate repre-

sentation, expressed through the nonaveraged Green’s
functions Gs (s ¼ R, A denotes the retarded and the
advanced ones). Since the case of degenerate electron
gas is assumed, the energy ε stands in a narrow interval
around the Fermi level and can be replaced by εF if the
correlation function in Eq. (3) slowly varies with energy, in
particular, in the classical transport regime. Evaluating
Eq. (3) within the accuracy up to the first power in the
random potential correlator wðqÞ defined as a Fourier
transform of the correlation function hV0Vri leads to

two contributions: σdαβ ≃ σð1Þαβ þ σð2Þαβ ,

σð1Þαβ ðr; r0Þ ¼ 2πe2l4ϵαγϵβγ0 ð∇γUrÞð∇γ0Ur0 Þ

×
Z

dε

�
−
∂fε
∂ε

�
hAεðr; r0ÞAεðr0; rÞi; ð4Þ

σð2Þαβ ðr; r0Þ ¼ 2πe2l4ϵαγϵβγ0
Z

dε

�
−
∂fε
∂ε

�

×
Z

dq
ð2πÞ2 qγqγ0wðqÞe

iq·ðr−r0ÞAεðr; r0ÞAεðr0; rÞ;

ð5Þ

where Aεðr; r0Þ ¼ hAεðr; r0Þi is the averaged spectral
function. The first contribution describes the conductivity
due to the presence of smooth potential gradients. The
second one is the leading term in the expansion of the
conductivity in powers of the ratio of the scattering rate to
cyclotron frequency. Keeping only these contributions is
sufficient in the case of classically strong magnetic fields,
ðωcτtrÞ2 ≫ 1, where τtr is the transport time.
The difference between the present technique and

previous applications of the Kubo formalism to the problem
is a consideration of nonlocal response instead of the local
one, which is necessary for correct evaluation of the
conductivity, and the application of the identity Eq. (2),
which separates the drift-induced σð1Þ and diffusion-induced
σð2Þ contributions and removes the necessity to specify
eigenstates and Green’s functions at the early stage of
calculations.
To find σð1Þ, one needs to calculate the pair correlation

function in Eq. (4), which is determined, in the Born
approximation, by the particle-hole ladder series. In the case
of arbitrary wðqÞ, the problem cannot be solved analytically
even in the classical limit. Therefore, the case of white
noise random potential is assumed when wðqÞ is replaced
by a constant. Introducing the correlator Css0

ε ðr; r0Þ ¼
whGs

εðr; r0ÞGs0
ε ðr0; rÞi and applying a standard technique of

summation leads to the integral equation Css0
ε ðr;r0Þ¼

Kss0
ε ðr;r0ÞþR

dr1Kss0
ε ðr;r1ÞCss0

ε ðr1;r0Þ, where Kss0
ε ðr; r0Þ ¼

wGs
εðr; r0ÞGs0

ε ðr0; rÞ is the “bare” correlator expressed
through the averaged Green’s functions. It is convenient to
rewrite this equation for the double Fourier transforms of C
and K:

Cεðq;q0Þ ¼Kεðq;q0Þþ
Z

dq1

ð2πÞ2Kεðq;q1ÞCεðq1;q0Þ: ð6Þ

Since only the termswith s ≠ s0 are important, the repeating s
indices are omitted here and below. The correlators C andK
are essentially different. While Kεðr; r0Þ describes correla-
tions on the 2R scale, Cεðr; r0Þ has no definite correlation
length and logarithmically depends on jr − r0j. This is a
consequence of the diffusion-pole divergence ofCεðq;q0Þ, as
in the limit of small q Eq. (6) can be reduced to a diffusion
equation. The long-range behavior of correlations is a
general property topologically dictated by the dimensionality
2 [49,50].
In contrast to σð1Þ, the contribution σð2Þ can be treated

locally, because it contains the exponential factor eiq·ðr−r0Þ,
where q has meaning of the momentum transferred in the
scattering of electrons by the potential V. Since q is
comparable to the Fermi momentum (except for the
scattering on very small angles), the correlation length is
much smaller than both R and the modulation length, and it
is sufficient to consider the local conductivity,

σð2Þαβ ðrÞ ¼
Z

dΔrσð2Þαβ ðrþ Δr=2; r − Δr=2Þ: ð7Þ
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Classical conductivity.—The contribution σð1Þ is already
proportional to the squared gradient of the smooth potential
Ur. In the classical case, when the Landau quantization is
neglected, accounting for Ur in the Green’s functions
entering Cε leads to an expansion in powers of small
parameters Ur=εF and ∇UrR=εF. Therefore, to calculate
σð1Þ in the classical limit, it is sufficient to employ the
Green’s functions of a homogeneous system:

GR;A
ε ðr; r0Þ ¼ eiθðr;r0Þ

2πl2

X∞
N¼0

L0
NðjΔrj2=2l2Þe−jΔrj2=4l2

ε − εN � i=2τ
; ð8Þ

where Δr ¼ r − r0, the sum is taken over the Landau
level numbers, LM

N is the Laguerre polynomial, εN ¼
ωcðN þ 1=2Þ is the Landau level spectrum, τ ¼ 1=mw is
the scattering time, and θðr; r0Þ ¼ ðe=cÞ R r

r0 dr1 ·Ar1 .
Because of the homogeneity, Eq. (6) is solved analytically:

Cεðq;q0Þ ¼Cεqð2πÞ2δðq−q0Þ;Cεq ¼Kεq=ð1−KεqÞ; ð9Þ

where

Kεq ¼
w

2πl2

X
N;N0

ð−1ÞNþN0
e−βLN−N0

N ðβÞLN0−N
N0 ðβÞ

ðε − εN þ i=2τÞðε − εN0 − i=2τÞ ð10Þ

and β ¼ q2l2=2. The classical limit corresponds to treat-
ment of the Landau level numbers as continuous variables
and to application of the asymptotic form of LM

N ðβÞ at large
N. With ε ¼ εF and q ≪ mvF, this leads to

Kεq ≃ Kq ¼
X∞
n¼−∞

J2nðqRÞ
1þ ðnωcτÞ2

; ð11Þ

where Jn is the Bessel function. If ðωcτÞ2 ≫ 1, it is
sufficient to retain a term with n ¼ 0. As a result,

Cεq ≃ Cq ¼ J20ðqRÞ=½1 − J20ðqRÞ� ð12Þ

and

σð1Þαβ ðr; r0Þ ¼
e2τ

πmω2
c
ϵαγϵβγ0

Z
dq1

ð2πÞ2
Z

dq2

ð2πÞ2
Z

dq
ð2πÞ2

× eiðq−q1Þ·reiðq2−qÞ·r0q1γq2γ0
U−q1Uq2

J20ðqRÞ
1 − J20ðqRÞ

;

ð13Þ

where Uq is the Fourier transform of Ur.
Using the Green’s functions (8) for calculations of the

local contribution σð2Þαβ ðrÞ in the classical limit gives the
isotropic Drude conductivity at ðωcτÞ2 ≫ 1:

σð2Þαβ ¼ δαβ
e2ns
mω2

cτ
; ð14Þ

where ns is the electron density. Consideration of higher-
order terms (not included in σð2Þ) leads to an additional

contribution −σð2Þαβ =½1þ ðωcτÞ2� that complements the con-
ductivity to the full Drude form. A generalization to the
case of arbitrary wðqÞ is straightforward and results in a
substitution of the transport time τtr in place of τ. The effect
ofUr on σð2Þ leads to contributions of the order ðωcτÞ−2σð1Þ
and, therefore, is neglected.
Magnetic modulation.—If the modulation δBr instead of

Ur is present, σð1Þ of Eq. (4) is replaced by

σð1Þαβ ðr; r0Þ ¼ 2πe2
δBrδBr0

B2

Z
dε

�
−
∂fε
∂ε

�

× hṽrαṽr0βAεðr; r0ÞAεðr0; rÞi; ð15Þ

where ṽr ¼ ½−iν∂=∂r − ðe=cÞAr�=m is a differential oper-
ator with ν ¼ 1=2 (ν ¼ −1=2) when acting on the first
(second) coordinate variable of the Green’s functions. The
response is determined by the correlator Mαβ

ε ðr; r0Þ ¼
whṽrαṽr0βGs

εðr; r0ÞGs0
ε ðr0; rÞi with s ≠ s0:

Mαβ
ε ðr;r0Þ ¼Mαβ

ε ðr;r0Þþ
Z

dr1

Z
dr2ṽrαKεðr;r1Þ

× ½δðr1−r2ÞþCεðr1;r2Þ�ṽr0βKεðr2;r0Þ; ð16Þ

where Mαβ
ε ðr; r0Þ ¼ wṽrαṽr0βGs

εðr; r0ÞGs0
ε ðr0; rÞ. In the

classical case, using Green’s functions of Eq. (8) and
Cεq of Eq. (12), one gets the expression for Fourier

transform of Mαβ
ε ðr; r0Þ at ε ¼ εF and q ≪ mvF:

Mαβ
q ≃ ϵαγϵβγ0

qγqγ0

q2
v2F

J21ðqRÞ
1 − J20ðqRÞ

: ð17Þ

Therefore, σð1Þαβ ðr; r0Þ of Eq. (15) can bewritten in the form of
Eq. (13), when the latter is modified by the substitution
q1γq2γ0U−q1Uq2J

2
0ðqRÞ → qγqγ0δB−q1δBq2ðεF=BÞ2J21ðqRÞ=

ðqR=2Þ2.
Periodic modulation.—In the case of a periodic Ur or

δBr, the problem becomes macroscopically homogeneous
and described by the conductivity tensor

σαβ ¼
1

S

Z
dr

Z
dr0σαβðr; r0Þ; ð18Þ

which can be also viewed as the average of the local
conductivity over the elementary cell of modulation lattice.
Application of Eq. (18) to Eq. (13) gives, for potential and
magnetic modulation, respectively,
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σð1Þαβ ¼ e2nsτ
m

Z
dq

Ωq

2q2
ϵαγϵβγ0qγqγ0

1 − J20ðqRÞ
� ðqRÞ2J20ðqRÞ
4J21ðqRÞ

; ð19Þ

with Ωq ¼ P
k1;k2 juk1;k2 j2δðq − k1Q1 − k2Q2Þ, where k1

and k2 are integers, Q1 and Q2 are the Bravais vectors
of the reciprocal lattice, and uk1;k2 are the Fourier coef-
ficients of the relative modulation strength, uðrÞ ¼ Ur=εF
for the potential modulation and uðrÞ ¼ δBr=B for the
magnetic one. For harmonic unidirectional modulation,
uðrÞ ¼ η cosðQxÞ, the vectors are Q1 ¼ ðQ; 0Þ and
Q2 ¼ ð0; 0Þ, while nonzero coefficients are u1;0 ¼ u−1;0 ¼
η=2. Thus, only the component σð1Þyy survives, leading to the

resistivity ρð1Þxx ≃ σð1Þyy =σ2H, where σH is the classical Hall
conductivity. This contribution is identified with the Weiss
oscillations term, in full agreement with the results of
theories based on the Boltzmann equation [2,18,19].
Previous theories based on the Kubo formula for local
conductivity miss the term J20 in the denominator. This
would occur if the correlators Cq and Mαβ

q were replaced

by the bare correlators Kq and Mαβ
q . Such an approxima-

tion is justified at qR ≫ 1, when J2l ðqRÞ ≃ ð2=πqRÞ×
cos2ðqR − lπ=2 − π=4Þ. In the general case of anharmonic
2D modulation, Eq. (19) gives a superposition of Weiss
oscillations with different q in both ρxx and ρyy [9]. In the
adiabatic limit, qR ≪ 1, ρð1Þ ∝ B2 in agreement with the
experiment [10].
Random modulation.—In the case of weak modulation

by random potential or magnetic field, the problem is again
macroscopically homogeneous. The current density aver-
aged over a large area is approximately related to the
averaged driving electric field by the local Ohm’s law with
the conductivity tensor of Eq. (18), averaged over the
random modulation distribution. This approximation is
valid because of the assumed weakness of modulation,
while in the general case the problem of linear response in
inhomogeneous media remains very complicated even
in the local formulation [51]. The averaging of σð1Þαβ written
in the form of Eq. (13) is equivalent to a substitution
u−q1uq2

→ Sδq1;q2Wðq1Þ, where WðqÞ is the Fourier trans-
form of the correlator huð0ÞuðrÞi. This leads to the isotropic
conductivity

σð1Þ ¼ e2nsτ
m

Z
∞

0

dq
8π

qWðqÞ
1 − J20ðqRÞ

� ðqRÞ2J20ðqRÞ
4J21ðqRÞ

: ð20Þ

The functionWðqÞ is expected to decreasewithq on the scale
of inverse mean modulation length r−10 . For example,
WðqÞ ∝ e−r0q in the case of remote ionized impurity poten-
tial relevant for 2D electrons in high-mobility heterostruc-
tures. According to Eq. (20), in the adiabatic limit R ≪ r0
one has ρð1Þ ∝ B2 for both types of modulation, while at
R ≫ r0 ρð1Þ ∝ B for the potential modulation and ρð1Þ ∝ B3

for the magnetic one. Though both Vr and uðrÞ are random,
the problem studied here is not equivalent to the problem of
electronmotion in the presence of two kinds of scatterers, the
short-ranged and the long-ranged ones. Indeed, the effect of
modulation accounted in σð1Þ is electron drift rather than
scattering-assisted diffusion, while the diffusion occurs due
to the potentialVr. The positivemagnetoresistance described
above is a consequence of the drift motion (although the drift
along closed contours is also known to be a cause of
localization, which cannot be accounted within the Born
approximation). A different model of two-component dis-
order [52] can lead to a negative magnetoresistance.
Finally, one should discuss possible effects of electron-

electron (Coulomb) interaction on the magnetoresistance of
modulated 2D electron gas. Although this interaction
conserves the total momentum of electrons, it does con-
tribute to the Green’s functions, modifying the energy
spectrum and, consequently, the conductivity. The com-
bined effect of the periodic modulation and the Coulomb
interaction is essential in strong magnetic fields, when the
interaction changes the shape of the Shubnikov–de Haas
oscillations [53,54]. Next, the interaction-induced correc-
tion to conductivity [55] generates oscillations in ρyy [56],
which are not related to the Landau quantization and,
therefore, are important as well in the classical region of
fields studied in this Letter. Apart from that, the interaction-
induced imaginary part of self-energy in the Green’s
functions, which can be described by the temperature-
dependent inelastic scattering time τin, leads to a cutoff of
the diffusion pole in the correlator Cq. As a result, one
should expect a suppression of the conductivity σð1Þ when
the modulation length (period) increases and becomes
comparable to the diffusion length lD ¼ ffiffiffiffiffiffiffiffiffi

τinD
p

, whereD ¼
R2=2τ is the diffusion coefficient. Since lD ≫ R, owing to
the assumed τin ≫ τ at low temperatures, this effect may
influence the resistance in the adiabatic limit only.
In summary, the problem of magnetotransport in modu-

lated 2D electron systems requires consideration of non-
local response. The classical commensurability phenomena
are described as a result of mapping of the modulation
structure onto the spatial correlation pattern of a homo-
geneous electron system. The correlation functions respon-
sible for potential and magnetic modulation in the regime
of classically strong magnetic fields [Eqs. (12) and (17)]
depend only on the cyclotron radius. A random modulation
leads to a positive magnetoresistance that is sensitive to the
modulation type until the adiabatic limit is reached. It
remains a question whether similar conclusions apply to 2D
systems with Dirac band spectrum such as graphene and
related materials.
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