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We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching
(QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change
of the electronic temperature without the need to involve structural transformations or electron-phonon
coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal
density functionals employing the local density approximation (LDA) or generalized gradient approx-
imations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic
temperature dependence and account for temperature only via the occupation of bands, which essentially
leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham
methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-
Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of
correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds
the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the
case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This
demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are
based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic
temperature is identified as a handle to tune topological materials.
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Topological insulators [1] and related materials attract
enormous interest both for fundamental reasons and due to
potential technical applications. Temperature is considered
as a possible handle to control topological order and to
induce topological phases. Furthermore, if temperature
influences the topological nature of the electronic structure
of a material this needs to be understood before a designing
of technical devices can be envisioned. Reliable predictions
of electronic properties of materials are obtained from first-
principles methods that are typically based on the Kohn-
Sham (KS) formalism of density-functional theory (DFT)
[2,3]: so far, first-principles investigations of temperature
effects of topological insulators and their phase transitions
concentrated on the temperature dependence of phonon
effects [4–7], i.e., electron-phonon coupling. Furthermore,
topological phase transitions were obtained in DFT calcu-
lations mimicking temperature-driven structural transfor-
mation; see, e.g., Ref. [8]. We here show that temperature
can lead to phase transitions in zinc-blende semimetals
without taking into account phonons or structural trans-
formations just via the direct effect on the electronic
structure. That is, the electronic temperature alone can
lead to phase transitions. In particular, we demonstrate that
the quadratic band touching (QBT) at the center of the
Brillouin zone of GaBi, InBi, and HgTe vanishes at low
electronic temperature and a transition to another electronic
state occurs. In GaBi and HgTe, moreover, Weyl points
[9–12] emerge during the transitions.

The findings of this Letter thus point to a new mecha-
nism for manipulating the topological nature of materials.
Exploiting this mechanism opens up new opportunities in
predicting and designing topological insulators and related
material provided it can be reliably described. We show that
this is not possible with the commonly used KS methods
based on exchange-correlation functionals employing the
local density approximation (LDA) or the generalized
gradient approximation (GGA) [2,3]. The reason is that
LDA or GGA functionals cannot take into account the
intrinsic temperature dependence of exchange and corre-
lation. Temperature is accounted for merely by the temper-
ature dependence of the occupation of bands via the Fermi
distribution function. As shown below this essentially leads
only to a shift of the Fermi energy without changing the
shape of the bands. We then demonstrate that KS methods
with functionals going beyond the LDA or GGA can
describe topological phase transitions caused by electronic
temperature. More specifically the exact temperature-
dependent KS exchange potential with its intrinsic temper-
ature dependence is shown to describe temperature-driven
qualitative changes of band structures including phase
transitions. The exact nonzero-temperature KS exchange
potential is a local multiplicative potential that must not be
confused with the nonlocal Hartree-Fock exchange poten-
tial. In Ref. [13] the nonzero-temperature exact-exchange
(EXX) KS approach is introduced. It is based on the
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nonzero-temperature density-functional theory of Mermin
[14]. The nonzero-temperature EXX approach generalizes
the corresponding zero-temperature EXX method [15,16]
and like the latter constructs the local multiplicative EXX
potential via the optimized effective potential method
[17,18]. In this Letter we combine the nonzero-temperature
EXX approach with a treatment of spin-orbit interactions
and noncollinear spin. The computational requirements of
EXX KS methods including those for nonzero temperature
[13,19] are roughly that of hybrid density-functional
methods. A nonzero-temperature Hartree-Fock treatment
of the effects considered here is not possible due to the
artificially vanishing density of states at the Fermi level in
the Hartree-Fock method.
Besides pointing to a new handle to design materials

with topologically interesting electronic structures, the
results of this work show that conventional LDA or
GGA methods are not sufficient to describe temperature
effects in such materials. A complete description requires
the use of exchange-correlation functionals with intrinsic
temperature dependence. The EXX method employed here
represents a starting point to that end.
The EXX method treats exchange exactly but neglects

correlation. To model the physical effect of correlation
we replaced the electron-electron interaction 1=jr − r0j
within the exchange by a screened one, that is, by
exp½−γjr − r0j�=jr − r0j. While such a simple screening
cannot be expected to yield highly accurate total energies,
it is ideal to investigate how robust our findings are with
respect to correlation effects because we can tune the latter
by varying the parameter γ. All major effects, i.e., the
transitions to magnetic phases, discussed in the manuscript
for the pure EXX case remain present in the case of
screening, even for quite large γ values of 0.3 correspond-
ing to a screening of exchange by a factor of 1=e at a
distance of 1.7 Å. See Supplemental Material (SM) [20],
which includes Refs. [21–35], for details on the results
obtained with screened exchange.
Our calculations were performed with the MCEXX pro-

gram [36] based on norm-conserving pseudopotentials and
plane-wave basis functions; see SM [20] for details. The
implementation of the nonzero-temperature EXX approach
in the MCEXX program is described in Ref. [13]. We sample
the Brillouin zone with a regular Γ-point-centered grid
of 8 × 8 × 8 k points. The plane-wave cutoff was set to
60 a.u. for the one-electron KS functions and to 30 a.u.
for the representation of the exchange potential and the
response function. The calculations take into account
noncollinear spin. Spin-orbit interactions are included
via pseudopotentials [37] that were generated with the
code of Ref. [38]. For In and Hg, the semicore d electrons
are treated as valence electrons, whereas for other atoms
only the energetically highest s and p electrons are
included in the valence space. We use the experimental
lattice parameter of 6.453 Å for HgTe [39] and lattice

parameters of 6.457 and 6.853 Å for GaBi and InBi [40],
respectively, which were optimized by density-functional
calculations with the exchange-correlation functional of
Perdew et al. [41]. In all cases the nuclear positions were
kept fixed and only the electronic temperature was varied.
We tested how robust the observed effects due to nonzero

electronic temperature are with respect to the effect of
temperature on the nuclear degrees of freedom by repeating
our calculations for modified lattice constants to model
thermal expansion. No qualitative changes were observed;
for details see SM [20].
Figure 1 displays the LDA and EXX band structures of

GaBi. Both band structures are displayed twice: (i) in the
usual way with respect to the Fermi level and (ii) with the
energy of the QBT set to 0. In this second view changes of
the form of bands due to temperature variation can easily
be detected. Figure 1 clearly shows that the LDA band
structures for all electronic temperatures exhibit almost
exactly the same form even at a temperature of 10 000 K
that does not make sense for a solid. The only effect of
raising the electronic temperature is a shift of the Fermi
energy. The form of EXX band structures, on the other
hand, exhibits sizable changes with temperature. Note that
the so-called Lifshitz transition, i.e., the change of the
topology of the Fermi surface [42,43], occurs at T ≈ 500 K,
when the two energetically lowest bands that are located
above the Fermi energy at higher temperatures cross the
Fermi level near the L point. In the LDA band structures
this intersection is present at all temperatures, which
represents a qualitatively different behavior.
Even stronger differences between LDA and EXX band

structures manifest themselves at lower temperatures; see
Fig. 2 and SM [20]. Within the EXX description, the
electronic structure of GaBi is unstable towards a magnetic
state. The QBT disappears and instead spin-polarized flat
bands are formed in the vicinity of the original position of
the QBT. The flattening of bands near the Γ point with the
formation of an energy gap at the Γ point can possibly be
interpreted as a Fermi condensation due to a van Hove
singularity locally presented at the QBT [44,45]. After the
phase transition, spin splittings of bands along the Γ–L path
become very large and clearly visible in the band structure;
see SM [20] for figures showing the magnitude of mag-
netization in real space. Note that even before the phase
transition, noncollinear spin due to spin-orbit interactions
leads to tiny splittings of bands that cannot be resolved at
the scale of Fig. 1.
Further lowering of the temperature to 50 K leads to

another phase transition to a second magnetic state with a
Weyl point of type II [12] lying on the Γ–L path about
0.2 eV above the Fermi level; see Fig. 2. In a LDA
description neither of the phase transitions occurs, and
the band structure does not exhibit any changes when
lowering the temperature except the mentioned shift of the
Fermi level; see SM [20] for LDA band structures at low
temperatures.
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The electronic structure of InBi exhibits a similar
behavior with temperature. Within EXX, the transition
from the phase with QBT to the magnetic phase with flat
bands and an energy gap at the Γ point occurs at about
500 K. A second phase transition at lower temperature is
not found. Again no phase transitions occur within the
LDA. See SM [20] for band structures of InBi.

HgTe exhibits a behavior distinct from that of GaBi and
InBi. When the instability of the QBToccurs at T ≈ 500 K,
the electronic structure hosts a Weyl point of type I almost
exactly at the Fermi level on the Γ–L path; see Fig. 3. If the
temperature is further decreased then a small gap between
the initially touching bands appears. For temperatures
approaching 0 the size of the gap is about 5 meV. See

(a) (b)

FIG. 2. Band structure of GaBi at 100 (a) and 50 K (b) calculated within EXX. The zero point of the energy axis corresponds to the
Fermi level.

(a) (b)

(c) (d)

FIG. 1. Band structure of GaBi at various temperatures calculated within LDA [(a) and (b)] and EXX [(c) and (d)]. The zero point
of the energy axis corresponds to the Fermi level [(a) and (c)] or the energetic position of the point of the quadratic band touching
[(b) and (d)].
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SM [20], for the band structure at T ¼ 5 K. Note that an
analogous transition from an electronic state with QBT to a
state with a Weyl point was found in Ref. [46] for Pr2Ir2O7

in GGAþ U calculations by increasing the value of the
parameter U.
From the presented results, it is evident that proper

nonzero-temperature density-functional calculations are
required not only in the high-temperature regime, e.g.,
for warm dense matter [47], but also can be essential in the
low- and room-temperature domain. In this work we
showed that electronic phase transitions may be induced
exclusively by changes of the electronic temperature.
Additionally, this suggests, however, that temperature-
driven phase transition due to electron-phonon coupling
or due to temperature-induced structural changes may be
coupled to or at least influenced by temperature effects in
the electronic structure. Indeed, at low temperatures lattice
dynamics is suppressed except for zero-point vibrations,
whereas effects due to the electronic temperature were
shown here to be present even at very low temperatures in
some case and therefore should be taken into account
whenever temperature effects are considered.
The vanishing of the QBT at low temperatures found

in our EXX calculations supports speculations in the
literature about possible low-temperature instabilities of
QBTs in zinc-blende materials and certain pyrochlore
iridates [46,48–50]. In our calculations two distinct sit-
uations after the breaking of the QBT are found, one with
(HgTe, second transition in GaBi) and one without (first
transition in GaBi, InBi) the appearance of Weyl nodes.
The nondispersive flat bands formed in the latter case near
the original position of the QBT are consistent with recent
experimental results for Nd2Ir2O7 [51].
We have concentrated on a comparison of LDA and

EXX band structures. GGA band structures can be assumed
to exhibit a similar temperature dependence as LDA band
structures because GGA functionals like LDA functionals
neglect any explicit temperature dependence of exchange

and correlation. Indeed GGA band structures of GaBi
and HgTe in Refs. [52,53] resemble the LDA band
structures of this work.
In summary, we conclude that a proper nonzero-temper-

ature extension of DFT is mandatory for a reliable and
comprehensive description of temperature-driven physics
in topological materials. The nonzero-temperature EXX
approach of Ref. [13] employed in this work represents a
first truly temperature-dependent KS method. A simple
modeling of correlation effects by a screening of the
exchange did not lead to qualitative changes. This suggests
that previous experience in the zero-temperature case
that exact exchange-only band structures typically are of
good quality transfers to the nonzero-temperature regime.
A future path to correlation functionals with explicit
temperature dependence may be based on the adiabatic-
connection fluctuation-dissipation theorem [54,55] or a
proper nonzero temperature generalization thereof, starting
perhaps with a nonzero-temperature generalization of the
random phase approximation [56].
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