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The possible transition to the so-called ultimate regime, wherein both the bulk and the boundary layers
are turbulent, has been an outstanding issue in thermal convection, since the seminal work by Kraichnan
[Phys. Fluids 5, 1374 (1962)]. Yet, when this transition takes place and how the local flow induces it is not
fully understood. Here, by performing two-dimensional simulations of Rayleigh-Bénard turbulence
covering six decades in Rayleigh number Ra up to 10'* for Prandtl number Pr = 1, for the first time in
numerical simulations we find the transition to the ultimate regime, namely, at Ra* = 10'3. We reveal how
the emission of thermal plumes enhances the global heat transport, leading to a steeper increase of the
Nusselt number than the classical Malkus scaling Nu ~ Ra'/3 [Proc. R. Soc. A 225, 196 (1954)]. Beyond
the transition, the mean velocity profiles are logarithmic throughout, indicating turbulent boundary layers.

In contrast, the temperature profiles are only locally logarithmic, namely, within the regions where plumes

are emitted, and where the local Nusselt number has an effective scaling Nu ~ Ra

effective scaling in the ultimate regime.
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Rayleigh-Bénard (RB) flow, in which the fluid is heated
from below and cooled from above, is a paradigmatic
representation of thermal convection, with many features
that are of interest in natural and engineering applications
[1-3]. When the temperature difference between the two
plates (expressed as the dimensionless parameter Rayleigh
number Ra) is large enough, the system is expected to
undergo a transition from the so-called “classical regime”
of turbulence, where the boundary layers (BLs) are of the
laminar type [4-7], to the so-called “ultimate regime,”
where the BLs are of the turbulent type, as first predicted by
Kraichnan [8] and later by others [9—13]. In the classical
regime, the Nusselt number Nu (dimensionless heat trans-
fer) is known to effectively scale as Ra”, with the effective
scaling exponent S <1/3 [10,11,14-16]. Beyond the
transition to the ultimate regime, the heat transport is
expected to increase substantially, reflected in an effective
scaling exponent > 1/3 [1,8,12].

Hitherto, the evidence for the transition to the ultimate
regime has come only from experimental measurements
of Nu. In fact, the community is debating at what Ra
the transition starts and even whether there is a transition at
all. For example, Niemela and Sreenivasan [17] observed
that f3 first increases above 1/3 around Ra = 10'* and then
decreases back to 1/3 again for Ra~ 10'>. Subsequently,
Urban et al. [18] also reported = 1/3 for Ra= [10'2,10'].
However, Chavanne et al. [19,20] found that the effective
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scaling exponent f increases to 0.38 for Ra > 2 x 10'!. In
the experiments mentioned above, low-temperature helium
was used as the working fluid, and Prandtl number Pr
changes with increasing Ra. In contrast to helium, SF¢ has
roughly pressure independent Pr. This allowed He et al.
[21,22] to achieve the ultimate regime more conclusively.
They observed a similar exponent 0.38, but this exponent
was found to start only at a much higher Ra ~ 10'# (the
transition starts at Ra =~ 10'3). This observation is compat-
ible with the theoretical prediction [10,11] for the onset of
the ultimate regime. It is also consistent with the theoretical
prediction of Refs. [8,12], according to which a logarithmic
temperature and velocity BLs are necessary to obtain an
effective scaling exponent f = 0.38 for that Ra.

The apparent discrepancies among various high-Ra RB
experiments have been attributed to many factors. The
change of Pr, the non-Boussinesq effect, the use of a
constant temperature or constant heat flux condition, the
finite conductivity of the plates, and the sidewall effect can
all play different roles [1,23]. Direct numerical simulations
(DNS), which do not have these unavoidable artifacts as
occurring in experiments, can ideally help to understand the
transition to the ultimate regime, with the strict accordance to
the intended theoretic RB formulations. Unfortunately, high-
Ra simulations in three dimensions (3D) are prohibitively
expensive [24,25]. The highest Rayleigh number achieved in
3D RB simulations is 2 x 10'2 [23], which is one order of
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magnitude short of the expected transitional Ra. Two-
dimensional (2D) RB simulations, though different from
3D ones in terms of integral quantities for small Pr [26,27],
still capture many essential features of 3D RB [27].
Consequently, in recent years, 2D DNS has been widely
used to test theories, not only for normal RB [28,29] but
also for RB in porous media [30]. Although also expensive
at high Ra, now we have the chance to push forward to
Ra = 10" using 2D simulations as we will show in this
Letter.

Another advantage of DNS is that velocity and temper-
ature profiles can be easily measured, to check whether they
are logarithmic in the ultimate regime, as expected from the
theory. Specifically, for the temperature, only a few local
experimental measurements were available in the near-
sidewall regions of RB cells, which showed logarithmic
profiles [31,32]. Even worse, for the velocity, there is almost
no evidence for the existence of a logarithmic BL, due to the
experimental challenges. For instance, in cylindrical cells
with aspect ratio ' = O(1), the mean velocity profile cannot
be easily quantified because of the absence of a stable mean
roll structure [24]. In situations where stable rolls do exist
(e.g., narrow rectangular cells), the highest Ra available are
still far below the critical Ra at which logarithmic velocity
BLs can manifest themselves [4,7].

As DNS provides us with every detail of the flow field
which might be unavailable in experiments, it also enables us
to reveal the links between the global heat transport and the
local flow structures. A few attempts (both 2D and 3D) have
been made in the classical regime, in which logarithmic
temperature BLs were detected, by selectively sampling the
regions where the plumes are ejected to the bulk [31,33].
However, it is still unclear how these local logarithmic BLs
contribute to the attainment of the global heat transport
enhancement during the transition to the ultimate regime.

In this work, we observe the transition to the ultimate
regime in 2D for the first time in DNS, namely, at
Ra* = 10'3, similar as in the 3D RB experiments of
Ref. [21]. DNS also provides the first evidence that the
mean velocity profiles follow the log law of the wall, in
analogy to other paradigmatic turbulent flows [34-36].
Furthermore, we explore the link between the local and
global quantities to reveal the mechanism leading to the
increased scaling exponent beyond the transition.

The simulations have been carried out using a well-
validated second-order finite-difference code [37,38].
The two control parameters are Ra = agAL?/(vk) and
Pr = v/k, with a being the thermal expansion coefficient, g
the gravitational acceleration, A the temperature difference
across a fluid layer of depth L, v the kinematic viscosity,
and « the thermal diffusivity. In the simulations, Pr is fixed
at 1 and aspect ratio I' = W/L is fixed at 2, where W is the
width of the domain. With this I', it has been found that the
heat flux approximates the heat flux at an infinite aspect
ratio [39]. The boundary conditions are no-slip for the

velocity, a constant temperature for the bottom and top
plates, and periodic horizontally. Nu is calculated from the
relation Nu = v/RaPr(u,0), , — (0.0),,, with u, being the
vertical velocity, 6 the temperature, and (...), , the average
over a horizontal plane and time. All the cases were well
resolved. At the highest Ra = 10'*, we used a grid with
20480 x 10240 mesh points. For details of the simulations,
we refer to the Supplemental Material [40].

We begin by looking at the heat transport as a function of
Ra. In Fig. 1, we show Nu(Ra) compensated with Ra®3>,
for the range Ra=[108,10"]. Up to Ra = 10'" (blue
symbol), the effective scaling is essentially the same
(f~0.29) as has been already observed [27,39,41] in
the classical regime where the BLs are laminar [5,6]. This
trend continues up to the transitional Rayleigh number
Ra* = 10'3 (green symbol). Beyond this, we witness the
start of the transition to the ultimate regime, with a notably
larger effective scaling exponent f =~ 0.35, as evident from
the plateau in the compensated plot.

Next, to appreciate how the flow structures are different
before and beyond the transition (Ra*), we show the
respective instantaneous temperature fields, see Fig. 2.
The top panel presents a relatively low Ra = 10'! (below
Ra*), while the middle panel shows a high Ra = 10'*
(beyond Ra*). At low Ra, intense large scale rolls (LSRs)
are clearly visible. In comparison, at high Ra, the LSR,
although still evident, contains much weaker and smaller
structures. Interestingly, even at the highest Ra, the temper-
ature field still has both plume-ejecting and -impacting
regions. Additionally, these observations indicate that the
spatial extent of plume-ejecting regions do not grow in spite
of the increase in Ra.

We now focus on the mean (space and time) temperature
and velocity fields at the transitional Ra. Remarkably, even
after 500 dimensionless time units, the flow domain still
shows a stable mean roll structure; i.e., the rolls are pinned
with clearly demarcated plume-ejecting and -impacting
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FIG. 1. Nu(Ra) plot compensated by Ra’3>. The data agree well

with the previous results in the low-Ra regime [39]. The flow
structures of the three colored data points (blue for Ra = 101,
green for Ra = 1013, and gray for Ra = 10'#) are displayed in
Fig. 2.
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FIG. 2. The instantaneous temperature fields for (a) Ra = 10'!
and (b) Ra = 10'*. The corresponding movies are shown in the
Supplemental Material [40]. (c) The mean temperature and
velocity field for Ra = 10'3. The contours represent the mean
temperature field, while the vectors show the direction of the
velocity, scaled by its magnitude. The plate surfaces have been
divided into equal-sized plume-ejecting and -impacting regions.

regions [see Fig. 2(c)]. The mean temperature and velocity
fields display horizontal symmetry, which enables us to
average them over a single LSR instead of the whole
domain (as the velocity averaged horizontally for the whole
domain will be zero).

Figure 3(a) shows the temporally and spatially averaged
velocity and temperature profiles, performed on one single
LSR, for the following defined parameters: u,, u™, (u),,,
T, T*, (T)., and y*. The velocity profiles are non-
dimensionalized in terms of u™ and y™, in wall units, where
ut = (u),,/u, and y© = zu,/v. Here u, is the friction
velocity u, = \/m [42]. Similar to channel,
pipe, and boundary layer flows, we can identify two
distinct layers: a viscous sublayer, where u™ = y™, fol-
lowed by a logarithmic region, where the velocity profile
follows u* = (1/k,)Iny" + B, [42]. The inverse slope
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FIG. 3. Mean velocity (a) and temperature (b) profiles in wall
units (ut for velocity, T+ for temperature, and y* for wall
distance) at four Ra. The dashed lines show the viscous sublayer
behavior and the log-layer behavior. A log layer is seen for the
velocity (with inverse slope «,, = 0.4) but not for the temperature.
(c) Local temperature profiles averaged in plume-ejecting and
-impacting regions [see Fig. 2(c) for definitions]. The dashed
lines again show the viscous sublayer behavior and the log-layer
behavior. A log layer is seen for the temperature in the plume-
ejecting regions (with inverse slope kg =4.0) but not in
impacting regions.

gives k, = 0.4, which is remarkably close to the von
Karman constant in various 3D canonical wall-bounded
turbulent flows [35,36]. However, the parameter B, varies
with Ra. With increasing Ra, the logarithmic range grows
in spatial extent, until, at Ra* = 10'3, it spans one decade
in y*. We then express the averaged temperature profile
[Fig. 3(b)] T+ = (T, —(T),,)/ T, in wall units, where T is
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the bottom plate temperature and 7, = —«x0,(T), ,|._o/u, a
characteristic temperature scale analogous to u, for the
velocity [43]. The mean temperature profile shows a similar
viscous sublayer T+ = y™, followed by a rather flat region,
without a clear logarithmic dependence. Since the ultimate
regime is associated with logarithmic profiles, the key
question remains, as to why the mean temperature profile is
not logarithmic despite the global scaling relations sug-
gesting a transition in Fig. 1.

To find out, we look back more closely into the flow field of
Fig. 2(c) where the mean flow was separated into (a) a plume-
ejection region and (b) a plume-impacting region. As noted
earlier, the spatial extent of these regions does not grow with
increasing Ra, and the mean flow field is horizontally
symmetric. Therefore, the domain can be divided into
plume-ejection and -impacting regions, enabling us to per-
form a conditional analysis for the temperature profiles
specific to the respective regions. In Fig. 3(c), we plot these
profiles separately, for different Ra. Here, the averages are
performed based on the regions definition in Fig. 2(c), for T',,
T+,(T),,» y*. All the profiles collapse into a single curve in
the viscous sublayer. Beyond the viscous sublayer, the
impacting and ejecting regions show very different behavior.
For the impacting regions, the temperature profile is flat
(dotted curves) and remains so for all Ra. However, for the
plume-ejecting regions, we observe a clear log layer (solid
curves) withaprofile 7+ = (1/kg) Iny™ + By, wherexy = 4
is the equivalent von Kérmén constant for the temperature and
By varies with Ra. Similar to the velocity profiles, the extent
of the log layer increases with Ra. At the transitional
Ra* = 10'3, it spans one decade in y*.

Temperature profiles that are locally logarithmic (in
plume-ejecting regions) have been observed before for
both the classical and the ultimate regimes [31-33]. Based
on this, one hypothesis regarding how the system under-
goes the transition to the ultimate regime is that the fraction
of plume-emitting regions (or hot spots) will gradually
grow with increasing Ra [33]. As speculated, the trend
would continue until the entire BL becomes a hot spot, thus
leading to a mean logarithmic temperature profile. Our
findings indicate that here this is not the case, as even at
Ra = 10'* plume-impacting regions do not show a loga-
rithmic temperature profile. The presence of these
impacting regions makes the mean temperature profile
also nonlogarithmic [see Fig. 3(b)].

We now explain how the global heat transport scaling
can still undergo a transition to the ultimate regime, though
only the local temperature profile is logarithmic, not the
globally averaged one. We recall that, by definition on the
plate surface, Nu = —(0,6),. Following the observations
from Fig. 2(c), we compute the local Nu on the plate
surface from ejecting (Nu,) and impacting (Nu;) regions
separately. These are shown in Fig. 4, compensated by
Ra!/3. Up to Ra*, both Nu; and Nu, follow a similar trend,
with their respective local scaling exponents f; and
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FIG. 4. Local wall-heat flux as a function of Ra, separately for
the plume-ejecting region (Nu,) and the plume-impacting region
(Nu;). At Ra* = 10'3, Nu, starts to undergo a transition to the
ultimate regime with an effective scaling exponent of 0.38, while
Nu;(Ra) has a much smaller effective scaling exponent of 0.28.

p. < 1/3. However, beyond Ra*, Nu; and Nu, diverge.
The ejecting regions show an increased heat transport, with
p. = 0.38, which is precisely the ultimate scaling exponent
predicted for Ra~ O(10') with logarithmic BLs. In
contrast, the impacting regions have a much lower scaling
exponent f#; = 0.28. This means that the flow is partially in
the ultimate regime and partially still in the classical
regime. Based on these, we express the global Nusselt
number, Nu = Nu; + Nu,, in analogy to the Grossmann-
Lohse approach [10,12], wherein the dissipation rate
was separated into bulk and BL contributions. We write
Nu = C;Ra# + C,Ra’, where f3, is expected to become
even larger with increasing Ra [12]. The above expression
asymptotically approaches the ultimate regime scaling
when the plume-ejecting regions become more and more
dominant in transporting the heat with increasing Ra. Thus,
with only the local temperature profile being logarithmic
(in plume-ejecting regions), the system can still undergo a
gradual transition to the ultimate regime.

Finally, it is worthwhile to clarify the effect of the
imposed two-dimensionality on the heat transfer. As
mentioned in the beginning, 2D RB is different from
3D RB. However, the effective scaling exponents observed
are identical in 2D and 3D for a wide range of Ra in the
classical regime [27], and here we found that also in 2D the
transition starts at Ra* = 10'3. Furthermore, the logarith-
mic BLs are theoretically expected for both 2D and 3D,
as the theoretical argument [13] is built on the Prandtl
equations, which are 2D. Also in other 2D canonical flows,
logarithmic BLs have been observed, e.g., in channel flow
[44,45]. Therefore, the physical insights gained from this
work are useful for understanding the transition to ultimate
turbulence in both 2D and 3D flows.

In conclusion, we have used two-dimensional simula-
tions of Rayleigh-Bénard convection to investigate the
transition to the ultimate regime of thermal convection.
We followed the approach of using the local flow structures
to explain the globally observed heat transfer enhancement.

144502-4



PHYSICAL REVIEW LETTERS 120, 144502 (2018)

A transitional Rayleigh number Ra* = 10! was found for
the 2D RB with Pr = 1, beyond which the mean velocity
profile has a log layer spanning one decade. However, the
temperature profile is logarithmic only within the regions
where plumes are ejected. The local effective Nusselt
scaling exponent 3, increases to 0.38 in the plume-ejecting
regions, corresponding to the ultimate regime. The tran-
sition to the ultimate regime can be understood as the
gradual takeover of the global heat transport by the
contribution from the regions of plume ejection. In future
work, we will extend these 2D DNS to smaller (and larger)
Pr, to check the predicted Pr dependence [10,11] of the
transition to the ultimate regime.

Many open questions remain, for example whether wall
roughness can trigger a transition to an asymptotic ultimate
regime, in which Nu ~ Ra'/?, i.e., the logarithmic correc-
tions vanish. A previous study that reached Ra = 10'? has
shown that this was not yet the case [46]. However, in
rough wall Taylor-Couette (TC) simulations (reaching a
Taylor number of Ta ~ 2 x 10”) and experiments (reaching
Ta ~ 10'?) we did reach the corresponding asymptotic
ultimate regime for the angular momentum transport in TC
flow thanks to the effect of pressure drag [47]. As the
analog to pressure drag is absent in the heat flux balance for
RB flow, such an asymptotic ultimate regime may not exist
in RB flow [48].
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