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Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions
of molecules at ultracold temperatures are always computed by the time-independent quantum scattering
approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive
scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems
with more dimensions and provide real-time information on the process of bond rearrangement and/or
energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum
calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the
study of ultracold chemistry.
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Cooling molecules to ultracold (T < 10−3 K) temper-
atures has created a new research field of ultracoldmolecules,
whose applications range from tests of fundamental sym-
metries of nature, to quantum simulation of spin-lattice
models, to ultracold chemistry and ultracold dipolar matter
[1]. The experiments aimed at the production of ultracold
molecules have given rise to new techniques, including the
development of high-flux guided molecular beams [2],
chiral-sensitive microwave spectroscopy [3], magneto-
optical traps for molecules [4], a molecular fountain [5], a
molecular synchrotron [6], and Stark and Zeeman deceler-
ators [7,8]. Central to most experiments in this field are
collisions of molecules with atoms or with other molecules.
In fact, the most universal method to cool molecules from
ambient to ultracold temperatures remains evaporative and/or
sympathetic cooling [9,10]. These cooling mechanisms rely
on the dominance of momentum transfer in elastic collisions
of molecules over inelastic or reactive scattering, which are
detrimental to cooling at low temperatures. Theoretical
predictions of cross sections for molecular scattering at cold
(∼1 K) and ultracold temperatures are thus vital for the field
of ultracold molecules. They are not only necessary for
predictions as to which molecular species are amenable to
collisional cooling but also crucial for understanding the
broadening mechanisms in precision measurements with
trapped molecules, the extent of tunability of microscopic
molecular interactions by external fields, and themechanisms
of chemical reactions at ultracold temperatures.
There are generally two rigorous quantum approaches

to calculate the cross sections for molecular collisions: the

time-independent close coupling (CC) method and the time-
dependent wave packet (TDWP) dynamics technique. The
CC method represents the eigenfunctions of the full time-
independent Hamiltonian by a basis set expansion, which
reduces the Schrödinger equation to a set of coupled differ-
ential equations. All of the previous scattering calculations
for collisions ofmolecules at cold and ultracold temperatures
have been done with the CC method or approximate
techniques based on the CCmethod.However, the numerical
difficulty of the CC calculations increases as N3 with the
number N of the basis states, so the CC method is limited to
atom-diatom or light molecule-molecule scattering systems.
The application of the CC calculations tomolecule-molecule
collisions for heavy molecules or for polyatomic molecules
is prohibitively difficult.As the field of ultracoldmolecules is
progressing towards polyatomic molecules [11–13], it is
necessary to extend rigorous quantum calculations of ultra-
cold scattering to larger molecular systems. The numerical
difficulty of TDWP calculations scales muchmore favorably
as N logN, which makes TDWP calculations applicable to
larger molecular systems. However, until now, TDWP
dynamics could not be extended to ultracold temperatures
due to the large deBrogliewavelength of ultracoldmolecules
and perceived difficulties with absorbing ultracoldmolecular
wave packets at the boundaries of the calculation grids.
Here, we overcome these problems and present the first

TDWP calculations of cross sections for an ultracold atom-
molecule chemical reaction. We illustrate that the TDWP
calculations can be extended to the s-wave scattering regime
and describe properly the threshold behavior of the reaction

PHYSICAL REVIEW LETTERS 120, 143401 (2018)

0031-9007=18=120(14)=143401(6) 143401-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.143401&domain=pdf&date_stamp=2018-04-04
https://doi.org/10.1103/PhysRevLett.120.143401
https://doi.org/10.1103/PhysRevLett.120.143401
https://doi.org/10.1103/PhysRevLett.120.143401
https://doi.org/10.1103/PhysRevLett.120.143401


cross sections in the limit of vanishing collision energy. We
perform calculations for the benchmark Fþ H2 → HFþ H
reaction, which has been studied widely, both at thermal
temperatures and in the ultracold regime [14]. We illustrate
that the method produces accurate cross sections for reac-
tions of molecules both in the ground state and in excited
states, as well as near scattering resonances.
Calculation details.—We solve the time-dependent

Schrödinger equation with the Hamiltonian

Ĥ ¼ −
ℏ2

2μR

∂2

∂R2
þ ĥðrÞ þ ðJ − jÞ2

2μRR2
þ j2

2μrr2
þ VðR; r; θÞ;

ð1Þ
in Jacobi coordinates illustrated in Fig. 1. Here, VðR; r; θÞ
is the atom-molecule interaction potential, J is the total
angular momentum of the collision complex, j is the
rotational angular momentum of the diatomic molecule,
and ĥðrÞ is given by

ĥðrÞ ¼ −
ℏ2

2μr

∂2

∂r2 þ VrðrÞ; ð2Þ

where VðrÞ is the intramolecular interaction potential.
We write the full time-dependent wave function as

ΨJMεðR; r; tÞ ¼
X
K

DJε�
MKðΩÞψðt; R; r; θ;KÞ; ð3Þ

where DJε�
MKðΩÞ is the parity-adapted normalized Wigner

rotation matrix, depending on the Euler angles Ω, and K is
the projection of J on the body-fixed (BF) quantization
axis. The BF states are represented as [15]

ψðt; R; r; θ; KÞ ¼
X
n;v;j

FK
nvjðtÞuvjn ðRÞψvjðr; θÞ; ð4Þ

where ψ jvðr; θÞ are the rovibrational wave functions of the
diatomic molecule in the entrance reaction channel. The
radial functions uvnðRÞ are discussed below.
In the previous work [16], we developed an L-shaped

wave packet expansion method, which reduces redundant
computing of the wave function components for channels
with high energy in the asymptotic region, greatly accel-
erating the TDWP calculations at collision energies
>0.001 eV [17–20]. Here, we modify this procedure to
apply TDWP calculations to ultracold scattering.
When an ultracold collision happens, the radial grid

explored by the wave packets is extremely extended, which
makes general wave packet dynamics calculations prohibi-
tively difficult. To make TDWP calculations of ultracold
collisions feasible, we develop the following procedure.
First, we split the propagation grids into the interaction
region (labeled I in Fig. 1), the asymptotic region (II), and
the long-range region (R > R3, labeled III). Second, we
split the Hilbert space of molecular states into two sub-
spacesQ and P spanning variable numbers of states during
the propagation. We choose Q to include only the initial
state in region III, a reduced number of channels (all
open channels and a small number of closed channels) in
region II, and the full set of states needed for converged
calculations in region I. The P subspace is thus reduced to
zero in the interaction region I. At any time, we omit the
components of the wave packet in P, which allows us to
propagate the wave packet with vanishingly small collision
energy to very large distances R.
More specifically, for a molecule initially in the rovibra-

tional state (v0, j0), we restrict the sum over v and j in
Eq. (4) to a single term ψvj ⇒ ϕj0

v0ðrÞYj0KðθÞ in region III,

a reduced number of terms ψvj ¼ ϕj
vðrÞYjKðθÞ with v ∈

½0; vas� in region II, and all terms ψvj ¼ ϕj
vðrÞYjKðθÞ with

v ∈ ½0; vmax� in region I. Here, ϕj
vðrÞ is the rovibrational

wave function of the diatomic molecules in the entrance
reaction channel and YjKðθÞ are spherical harmonics.
The radial functions uvjn ðRÞ are chosen as follows

[16,21,22]:

uvjn ¼

8>>>>>><
>>>>>>:

ffiffiffiffiffiffiffiffiffiffi
2

R4−R1

q
sin nπR

R4−R1
v ¼ v0; j ¼ j0ffiffiffiffiffiffiffiffiffiffi

2
R3−R1

q
sin nπR

R3−R1
0 ≤ v ≤ vasffiffiffiffiffiffiffiffiffiffi

2
R2−R1

q
sin nπR

R2−R1
0 ≤ v ≤ vmax:

ð5Þ

We construct the initial wave packet in the BF repre-
sentation as

ΨJMε
v0j0K0

ðt ¼ 0Þ ¼ GðRÞϕv0j0ðrÞjJMj0K0εi; ð6Þ

where jJMj0K0εi is the total angular momentum eigenstate
in the BF representation with parity of the system ε,

FIG. 1. Illustrative drawing of the configuration space for
ultracold Fþ H2 → HFþ H reaction. The roman numeral I
denotes the interaction region with the F–H2 distance R < R2,
II denotes the asymptotic region with fewer open channels, and
III labels the long-range region, where the wave packets are
restricted to contain only one molecular state. The shaded regions
show the absorption zones. The reactive flux is evaluated at the
surface defined by r ¼ rs.
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ϕv0j0ðrÞ is the rovibrational wave function of the diatomic
reactant, and GðRÞ is a Gaussian-shaped function,

GðRÞ ¼
�

1

2πσ2

�
1=4

exp

�
−
ðR − R0Þ2

4σ2
− ik0ðR − R0Þ

�
;

ð7Þ

describing a wave packet centered at R0, with width σ and
mean kinetic energy E0 ¼ ðℏ=2μRÞ½k20 þ 1

4
σ2�.

We use the fast sine transform to evaluate the action of the
radial Hamiltonian operators on the wave packet. The action
of the angular kinetic operators on the wave packet is
evaluated in a finite basis representation of spherical har-
monics. The corresponding discrete variable representation
[23] is used to evaluate the action of the potential energy
operator in the angular degree of freedom. The propagation
of the wave functions is computed using the split operator
method with a fourth-order propagator [24,25].
We need to ensure that the dynamical results are not

affected by unphysical reflections from the boundary of the
propagation grid. This is particularly important for an
utracold scattering problem involving extremely slow wave
packets. This can be achieved by means of an optical
potential absorbing the wave packets before they reach the
boundary. However, in an ultracold collision, the products
of a chemical reaction or inelastic scattering move much
faster than the reactants approaching each other with
vanishingly low energy. Therefore, absorbing potentials
must be designed to be different for the initial collision
channel and for molecules after the reactive or inelastic
scattering. In order to prevent reflection from the grid
edges, we multiply the wave function by a decaying
function Fabs near the boundary of the coordinate in each
propagation [16,26]. We set Fabs to

Fabs ¼ exp ½−Cabsðx − x0Þ=ðxmax − x0Þ� ð8Þ

in the interval x0 < x < xmax and Fabs ¼ 1 otherwise. The
parameters x0 and xmax depend on the collision channel. For
the products of the chemical reaction, the absorbing
potential starts at x0 ¼ rS, for the products of inelastic
scattering, at the edge of region II, and for the initial
scattering channel, x0 ¼ RS and xmax ¼ R4, with rs, RS, R1

and R3 illustrated in Fig. 1. In region III, nearly 80% of the
grid is used for absorbing at the lowest collision energy and
we used the value x0 ¼ 350 a:u: for the lowest energy
calculation. In region II, the length of the absorbing
potential for inelastic scattering is 4 a.u. [27].
As the collision energy decreases, R4 and the number of

sine basis functions must be increased. We use a total of
N ¼ 16383 sine basis functions (including 295 for region II
and 62 for region I) and R4 ¼ 1920 a:u: at energies below
0.08 cm−1. At higher collision energies, both N and R4 are
reduced by one-third for each order of magnitude of the

energy. Note that, because in the region between R3 and R4,
we only propagate one internal state, this increase of the
number of radial basis functions and R4 does not affect
much the numerical difficulty of the entire calculation.
Extending the calculations to lower energies (important for
heavier systems with the onset of threshold behavior at
lower energies) thus increases the computational difficulty
of a fraction of the computation by the factor ∝ N logN,
where N is a fraction of the total number of basis states.
Note also that the de Broglie wavelength of heavier systems
is smaller, so heavier systems require smaller grids.
We include a total of vmax ¼ 120 vibrational states for

the diatomic molecule fragment in region I, and vas ¼ 5
states for region II. For the rotational degree of freedom, we
include the spherical harmonics YjK with j from 0 up to
jmax ¼ 90. The values of the other parameters illustrated in
Fig. 1 are R1 ¼ 1, r1 ¼ 0.6, r3 ¼ 12, rS ¼ 10, R3 ¼
35 a:u: The values of RS and R4 are chosen to ensure
convergence.
Results.—In order to benchmark the performance of the

TDWP calculations, we compare the reaction probabilities
computed as described above with the results of the time-
independent CC calculations. The CC calculations were
performed with the ABC code [29], with the same potential
energy surface. The integration parameters and the basis
sets for the CC calculations were chosen to ensure full
convergence.
Figure 2 shows the comparison of the CC and TDWP

results for the reaction of F atoms with H2 molecules in the
ground rovibrational state in a wide range of energies
extending to the ultracold regime. The TDWP calculations
reproduce the CC results at all energies, resolving well even
the oscillatory behavior of the reaction probabilities at the
collision energy ∼1 cm−1. Even more importantly, the
TDWP calculations reproduce the threshold behavior of
the reaction probabilities as the collision energy vanishes.
We have also extended the calculations to compute the
state-resolved reaction probabilities [27], using the
approach from Refs. [30,31]. The upper inset of Fig. 2
shows a very good agreement between the rotational
state population distributions of the reaction products
computed with the two methods at the collision energy
8 × 10−3 cm−1. At this energy, only the v0 ¼ 2 state of the
product molecule is populated; both methods produce
negligible population of the other vibrational states.
As originally shown by Bethe and Placzek [32] and

Wigner [33], the probabilities for nuclear reactions vanish
as ∝

ffiffiffiffi
E

p
when the collision energy E → 0. It was later

shown by Balakrishnan and co-workers [34,35] that this
result also applies to reactive scattering of molecules.
Since, at ultracold temperatures, the reaction rate k is
related to the reaction probability P as k ∝ P=

ffiffiffiffi
E

p
, the

reaction rate is finite and temperature-independent in the
limit of zero temperature. The zero-temperature rate is
determined by the value of the reaction probability as it
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enters the threshold ∝
ffiffiffiffi
E

p
regime. Figure 2 shows that the

TDWP calculations are accurate all the way down to the
threshold regime. There is no need to extend the calculations
to lower energies as the reaction probabilities can be
extrapolated analytically and the zero-temperature rate can
be computed based on the value of the reaction probability at
E ¼ 8 × 10−3 cm−1. We thus illustrate that the TDWP
calculations describe accurately ultracold reactive scattering.
In addition to v0 and j0, the initial state of the collision

complex is determined by the end-over-end rotational
angular momentum l. Ultracold collisions (of bosons or
distinguishable particles) are entirely determined by the
components of the wave function with l ¼ 0, describing
s-wave scattering, for which there is no long-range centrifu-
gal barrier to prevent the wave packet from approaching the
reaction region. It is necessary to verify that TDWP calcu-
lations can also accurately describe ultracold scattering with
higher partial waves, occurring by tunneling under the
centrifugal barriers. To illustrate the accuracy of TDWP
calculations for states of higher angular momentum
at ultralow energies, we fix the total angular momentum
to J ¼ 0 and compute the reaction probabilities for H2 in the
rotational state j0 ¼ 1. This is an important case to test, for
two reasons. First, this case does not permit s-wave scatter-
ing, so the dominant contribution to the ultracold reaction
probability comes from p-wave scattering. Second, the
reactive scattering of H2ðj ¼ 1Þ with F at ultralow energies
is known to be affected by a resonance, which may have a
dramatic effect on the threshold behavior of the reaction
probabilities. Since resonances are ubiquitous in ultracold

scattering, it is necessary to show that theTDWPcalculations
are accurate also for resonant scattering.
Figure 3 illustrates the agreement of the TDWP calcu-

lations with the CC results for reactions of molecules in the
j ¼ 1 state. The two methods are in excellent agreement for
both resonant and threshold reactive scattering. As illus-
trated by the inset of Fig. 3, the scattering resonance
results in a departure of the reaction probabilities from
the Wigner behavior at collision energies >4×10−2 cm−1.
Nevertheless, the TDWP calculations capture the energy
dependence of the reaction probabilities accurately, includ-
ing at the ultralow energies where the threshold energy
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FIG. 2. Probability of the chemical reaction Fþ H2ðv ¼ 0; j ¼
0Þ → Fþ HF summed over all final states of the reaction
products: full line, time-independent close coupling calculations;
symbols, time-dependent wave packet calculations. The lower
inset shows the low-energy reaction probabilities divided by the
square root of the collision energy, illustrating the threshold
behavior and the agreement of the two calculations in this limit.
The upper inset shows the probability distribution of the reaction
products versus j0 for v0 ¼ 2 at collision energy 8 × 10−3 cm−1:
TDWP, open bars; CC, full bars. The state-resolved probabilities
are normalized by the total reaction probability.
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dependence dominates and at the point of the deviation
from the Wigner dependence due to the resonance.
For molecules in the ground rovibrational state, there is

only one channel open in regions II and III of Fig. 1.
Therefore, the results shown in Figs. 2 and 3 are obtained
only with one channel propagated in region III. To verify
that the technique described here can be applied also to
molecules initially in excited states, we perform TDWP
calculations for reaction of H2 in the vibrationally and
rotationally excited state v0 ¼ 1, j0 ¼ 2. In this calculation,
as described above, we still propagate only one channel in
region III, but this channel now corresponds to an excited
state, leaving multiple channels energetically accessible at
all times. Figure 4 illustrates that this approach produces
accurate results in a wide range of energies, including near
a resonance.
Conclusion.—We have illustrated that the time-dependent

wave packet dynamics calculations can be extended for the
calculations of reaction probabilities ofmolecules at ultralow
collision energies, all the way down to the Wigner threshold
regime. Our results show that the reaction probabilities
computed with the time-dependent method are accurate both
near scattering resonances and in the threshold regime. The
time-dependent calculations can be applied to complex (4-,
5-, and even 6-atom) systems, which are currently out of
reach of time-independent close coupling calculations. The
numerical difficulty of the time-dependent calculations is
also similar for abstraction reactions (such as the one
considered here) and insertion reactions proceeding through
the formation of a strongly bound intermediate reaction
complex. By contrast, the time-independent calculations for
insertion reactions are much more difficult than the calcu-
lations for abstraction reactions. The insertion chemical
reactions are particularly important for the research field
of ultracold molecules, as most of the ultracold chemistry
experiments are performed with alkali metal dimers syn-
thesized from ultracold alkali metal atoms in magneto-
optical traps. Alkali metal dimers react predominantly
through insertion reactions [36]. Finally, wave packet
dynamics calculations offer a powerful method to study
ultracold reaction mechanisms by providing real-time infor-
mation on the bond-rearrangement process. Our work thus
makes possible the extension of rigorous quantum calcu-
lations of ultracold reaction properties to bigger than 3-atom
systems and to a variety of experimentally relevant alkali
metal dimer systems, and adds a new powerful tool for the
study of ultracold chemistry.
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