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We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD)
method, based on a many-body potential and interatomic forces generated by a carefully crafted deep
neural network trained with ab initio data. The neural network model preserves all the natural symmetries
in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the
network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety
of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are
essentially indistinguishable from the original data, at a cost that scales linearly with system size.
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Molecular dynamics (MD) is used in many disciplines,
including physics, chemistry, biology, and materials sci-
ence, but its accuracy depends on the model for the atomic
interactions. Ab initio molecular dynamics (AIMD) [1,2]
has the accuracy of density functional theory (DFT) [3], but
its computational cost limits typical applications to hun-
dreds of atoms and time scales of ∼100 ps. Applications
requiring larger cells and longer simulations are currently
accessible only with empirical force fields (FFs) [4–6], but
the accuracy and transferability of these models is often
in question.
Developing FFs is challenging due to the many-body

character of the potential energy. Expansions in two- and
three-body interactions may capture the physics [7], but are
strictly valid only for weakly interacting systems. A large
class of potentials, including the embedded atom method
(EAM) [8], the bond order potentials [9], and the reactive
FFs [10], share the physically motivated idea that the
strength of a bond depends on the local environment, but
the functional form of this dependence can only be given
with crude approximations.

Machine learning (ML) methodologies are changing this
state of affairs [11–20]. When trained on large data sets of
atomic configurations and corresponding potential energies
and forces, ML models can reproduce the original data
accurately. In training these models, the atomic coordinates
cannot be used as they appear in MD trajectories because
their format does not preserve the translational, rotational,
and permutational symmetry of the system. Different ML
models address this issue in different ways. Two successful
schemes are the Behler-Parrinello neural network (BPNN)
[13] and the gradient-domain machine learning (GDML)
method [19]. In the BPNN, symmetry is preserved by
mapping the coordinates onto a large set of two- and three-
body symmetry functions, which are, however, largely
ad hoc. Fixing the symmetry functions may become
painstaking in systems with many atomic species. In the
GDML, the same goal is achieved by mapping the
coordinates onto the eigenvalues of the Coulomb matrix,
whose elements are the inverse distances between all
distinct pairs of atoms. It is not straightforward how to
use the Coulomb matrix in extended periodic systems.
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So far, GDML has only been used for relatively small
molecules.
In this Letter, we introduce a neural network (NN) based

scheme for MD simulations, called deep potential molecu-
lar dynamics (DPMD), which overcomes the limitations
associated with auxiliary quantities like the symmetry
functions or the Coulomb matrix (All the examples
presented in this work are tested using the DeePMD-kit
package [21], which is available at [22]). In our scheme, a
local reference frame and a local environment is assigned to
each atom. Each environment contains a finite number of
atoms, whose local coordinates are arranged in a symmetry
preserving way following the prescription of the deep
potential method [23], an approach that was devised to
train a NN with the potential energy only. With typical
AIMD data sets, this is insufficient to reproduce the
trajectories. DPMD overcomes this limitation. In addition,
the learning process in DPMD improves significantly over
the deep potential method thanks to the introduction of a
flexible family of loss functions. The NN potential con-
structed in this way reproduces accurately the AIMD
trajectories, both classical and quantum (path integral),
in extended and finite systems, at a cost that scales linearly
with system size and is always several orders of magnitude
lower than that of equivalent AIMD simulations.
In DPMD, the potential energy of each atomic configu-

ration is a sum of “atomic energies” E ¼ P
iEi, where Ei is

determined by the local environment of atom i within a
cutoff radius Rc and can be seen as a realization of the
embedded atom concept. The environmental dependence
of Ei, which embodies the many-body character of the
interactions, is complex and nonlinear. The NN is able to
capture the analytical dependence of Ei on the coordinates
of the atoms in the environment in terms of the composition
of the sequence of mappings associated with the individual
hidden layers. The additive form of E naturally preserves
the extensive character of the potential energy. Because
of the analyticity of the atomic energies, DPMD is, in
principle, a conservative model.
Ei is constructed in two steps. First, a local coordinate

frame is set up for every atom and its neighbors inside Rc
[24]. This allows us to preserve the translational, rotational,
and permutational symmetries of the environment, as
shown in Fig. 1, which illustrates the format adopted for
the local coordinate information fDijg. The 1=Rij factor
present in Dij reduces the weight of the particles that are
more distant from atom i.
Next, fDijg serves as input of a deep neural network

(DNN) [25], which returns Ei in output (Fig. 2). The DNN is
a feed forward network, in which data flow from the input
layer to the output layer (Ei), through multiple hidden layers
consisting of several nodes that input the data dinl from the
previous layer and output the data doutk to the next layer. A
linear transformation is applied to the input data, i.e., d̃k ¼P

lwkldinl þ bk, followed by action of a nonlinear function

φ on d̃k, i.e., doutk ¼ φðd̃kÞ. In the final step from the last
hidden layer to Ei, only the linear transformation is applied.
The composition of the linear and nonlinear transformations
introduced above provides the analytical representation of
Ei in terms of the local coordinates. The technical details of
this construction are discussed in the Supplemental Material
[26]. In our applications, we adopt the hyperbolic tangent for
φ and use five hidden layers with decreasing number of
nodes per layer, i.e., 240, 120, 60, 30, and 10 nodes,
respectively, from the innermost to the outermost layer. It
is known empirically that the hidden layers greatly enhance
the capability of neural networks to fit complex and highly
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FIG. 1. Schematic plot of the neural network input for the
environment of atom i, taking water as an example. Atom j is a
generic neighbor of atom i, ðex; ey; ezÞ is the local frame of atom
i, ex is along the O─H bond, ez is perpendicular to the plane of
the water molecule, ey is the cross product of ez and ex, and
ðxij; yij; zijÞ are the Cartesian components of the vector Rij in this
local frame. Rij is the length of Rij. The neural network input Dij
may either contain the full radial and angular information of atom
j, i.e., Dij ¼ f1=Rij; xij=R2

ij; yij=R
2
ij; zij=R

2
ijg or only the radial

information, i.e., Dij ¼ f1=Rijg. We first sort the neighbors of
atom i according to their chemical species, e.g., oxygens first then
hydrogens. Within each species, we sort the atoms according to
their inverse distances to atom i, i.e., 1=Rij. We use fDijg to
denote the sorted input data for atom i.

FIG. 2. Schematic plot of the DPMD model. The frame in the
box is an enlargement of a DNN. The relative positions of all
neighbors with respect to atom i, i.e., fRijg, is first converted to
fDijg, then passed to the hidden layers to compute Ei.
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nonlinear functional dependences [27,28]. In our case, only
by including a few hidden layers could DPMD reproduce the
trajectories with sufficient accuracy.
We use the Adam method [29] to optimize the param-

eters wkl and bk of each layer with the family of loss
functions

Lðpϵ; pf; pξÞ ¼ pϵΔϵ2 þ
pf

3N

X

i

jΔFij2 þ
pξ

9
jjΔξjj2: ð1Þ

Here Δ denotes the difference between the DPMD pre-
diction and the training data, N is the number of atoms, ϵ is
the energy per atom, Fi is the force on atom i, and ξ is the
virial tensor Ξ ¼ − 1

2

P
iRi ⊗ Fi divided by N. In Eq. (1),

pϵ, pf, and pξ are tunable prefactors. When virial infor-
mation is missing from the data, we set pξ ¼ 0. In order to
minimize the loss function in Eq. (1) in a well balanced
way, we vary the magnitude of the prefactors during
training. We progressively increase pϵ and pξ and decrease
pf, so that the force term dominates at the beginning, while
energy and virial terms become important at the end. We
find that this strategy is very effective and reduces the total
training time to a few core hours in all the test cases.
To test the method, we have applied DPMD to extended

and finite systems. As representative extended systems, we
consider (a) liquidwater atP ¼ 1 bar and T ¼ 300 K, at the
path-integral AIMD (PI-AIMD) level, (b) ice Ih at P¼1 bar
andT ¼ 273 K, at the PI-AIMDlevel, (c) ice Ih atP ¼ 1 bar
and T ¼ 330 K, at the classical AIMD level, and (d) ice Ih at
P ¼ 2.13 kbar and T ¼ 238 K, which is the experimental
triple point for ice I, II, and III, at the classical AIMD level.
The variable periodic simulation cell contains 64 H2O
molecules in the case of liquid water and 96 H2Omolecules
in the case of ices. We adopt Rc ¼ 6.0 Å and use the full
radial and angular information for the 16 oxygens and
the 32 hydrogens closest to the atom at the origin, while
retaining only radial information for all the other atoms
within Rc. All the ice simulations include proton disorder.
Deuterons replace protons in simulations (c) and (d). The
hybrid version of Perdew-Burke-Ernzerhof ðPBE0Þ þ
Tkatchenko-Scheffler ðTSÞ [30,31] functional is adopted
in all cases. As representative finite systems, we consider
benzene, uracil, naphthalene, aspirin, salicylic acid, malo-
naldehyde, ethanol, and toluene, for which classical AIMD
trajectories with the Perdew-Burke-Ernzerhof ðPBEÞ þ TS
functional [31,32] are available [33]. In these systems, we set
Rc large enough to include all the atoms and use the full radial
and angular information in each local frame.
We discuss the performance of DPMD according to four

criteria: (i) generality of the model; (ii) accuracy of the
energy, forces, and virial tensor; (iii) faithfulness of the
trajectories; and (iv) scalability and computational cost [34].
Generality.—Bulk and molecular systems exhibit differ-

ent levels of complexity. The liquid water samples include
quantum fluctuations. The organic molecules differ in

composition and size, and the corresponding data sets
include large numbers of conformations. Yet DPMD
produces satisfactory results in all cases, using the same
methodology, network structure, and optimization scheme.
The excellent performance of DPMD in systems so diverse
suggests that the method should be applicable to harder
systems such as biological molecules, alloys, and liquid
mixtures.
Accuracy.—We quantify the accuracy of energy, forces,

and virial predictions in terms of the root-mean-square error
(RMSE) in the case of water and ices (Table I) and in terms
of the mean absolute error (MAE) in the case of the organic
molecules (Table II). No virial information was used for
the latter. In the water case, the RMSE of the forces is
comparable to the accuracy of the minimization procedure
in the original AIMD simulations, in which the allowed
error in the forces was less than 10−3 Hartree/Bohr. In the
case of the molecules, the predicted energy and forces are
generally slightly better than the GDML benchmark.
MD trajectories.—In the case of water and ices, we

perform path-integral or classical DPMD simulations at the
thermodynamic conditions of the original models, using the
I-PI software [35], but with much longer simulation time
(300 ps). The average energy Ē, density ρ̄, radial distribu-
tion functions (RDFs), and a representative angular dis-
tribution function (ADF), i.e., a three-body correlation
function, are reproduced with high accuracy. The results
are summarized in Table III. The RDFs and ADF of the
quantum trajectories of water are shown in Fig. 3. The

TABLE I. The RMSE of the DPMD prediction for water and
ices in terms of the energy, the forces, and/or the virial. The
RMSEs of the energy and the virial are normalized by the number
of molecules in the system.

System Energy (meV) Force (meV=Å) Virial (meV)

Liquid water 1.0 40.4 2.0
Ice Ih (b) 0.7 43.3 1.5
Ice Ih (c) 0.7 26.8 � � �
Ice Ih (d) 0.8 25.4 � � �

TABLE II. The MAE of the DPMD prediction for organic
molecules in terms of the energy and the forces. The numbers in
parentheses are the GDML results [19].

Molecule Energy (meV) Force (meV=Å)

Benzene 2.8 (3.0) 7.6 (10.0)
Uracil 3.7 (4.0) 9.8 (10.4)
Naphthalene 4.1 (5.2) 7.1 (10.0)
Aspirin 8.7 (11.7) 19.1 (42.9)
Salicylic acid 4.6 (5.2) 10.9 (12.1)
Malonaldehyde 4.0 (6.9) 12.7 (34.7)
Ethanol 2.4 (6.5) 8.3 (34.3)
Toluene 3.7 (5.2) 8.5 (18.6)
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RDFs of ice are reported in the Supplemental Material.
A higher-order correlation function, the probability distri-
bution function of the O─O bond orientation order param-
eter Q6 [36], is additionally reported in the Supplemental
Material and shows excellent agreement between DPMD
and AIMD trajectories. In the case of the molecules, we
perform DPMD at the same temperature of the original
data, using a Langevin thermostat with a damping time
τ ¼ 0.1 ps. The corresponding distributions of interatomic
distances are very close to the original data (Fig. 4).
Scalability and computational cost.—All the physical

quantities in DPMD are sums of local contributions. Thus,
after training on a relatively small system, DPMD can be
directly applied to much larger systems. The computa-
tional cost of DPMD scales linearly with the number of
atoms. Moreover, DPMD can be easily parallelized due to
its local decomposition and the near-neighbor dependence
of its atomic energies. In Fig. 5, we compare the cost of
DPMD fixed-cell simulations (NVT) of liquid water with
that of equivalent simulations with AIMD and the empiri-
cal FF TIP3P (transferable intermolecular potential with 3
points) [41] in units of CPU core seconds/step/molecule.
While in principle the environmental dependence of Ei

is analytical, in our implementation, discontinuities are
present in the forces, due to adoption of a sharp cutoff
radius, limitation of angular information to a fixed number
of atoms, and abrupt changes in the atomic lists due to

sorting. These discontinuities are similar in magnitude to
those present in the AIMD forces due to finite numerical
accuracy in the enforcement of the Born-Oppenheimer
condition. In both cases, the discontinuities are much
smaller than thermal fluctuations and perfect canonical
evolution is achieved by coupling the systems to a
thermostat. We further note that long-range Coulomb
interactions are not treated explicitly in the current imple-
mentation, although implicitly present in the training data.
Explicit treatment of Coulombic effects may be necessary
in some applications and deserves further study.

TABLE III. The equilibrium energy and density, Ē and ρ̄, of
water and ices, with DPMD and AIMD. The numbers in square
brackets are the AIMD results. The numbers in parentheses are
statistical uncertainties in the last one or two digits. The training
AIMD trajectories for the ices are shorter and more correlated
than in the water case.

System Ē (eV=H2O) ρ̄ (g=m3)

Liquid
water

−467.678ð2Þ [−467.679ð6Þ] 1.013(5) [1.013(20)]

Ice Ih (b) −467.750ð1Þ [−467.747ð4Þ] 0.967(1) [0.966(6)]
Ice Ih (c) −468.0478ð3Þ [−468.0557ð16Þ] 0.950(1) [0.949(2)]
Ice Ih (d) −468.0942ð2Þ [−468.1026ð9Þ] 0.986(1) [0.985(2)]
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FIG. 3. Correlation functions of liquid water from DPMD
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FIG. 4. Interatomic distance distributions of the organic mol-
ecules. The solid lines denote the DPMD results. The dashed
lines denote the AIMD results.
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In conclusion, DPMD realizes a paradigm for molecular
simulation, wherein accurate quantum mechanical data are
faithfullyparametrizedbymachine learningalgorithms,which
make possible simulations of DFT-based AIMD quality on
much larger systems and formuch longer time thanwith direct
AIMD. While substantially more predictive than empirical
FFs, DFTis not chemically accurate [44]. In principle, DPMD
could be trainedwith chemically accurate data fromhigh-level
quantum chemistry [45] and/or quantum Monte Carlo calcu-
lations [46], but so far this has been prevented by the large
computational cost of these calculations.
DPMD should also be very useful to coarse grain the

atomic degrees of freedom, for example, by generating a NN
model for a reduced set of degrees of freedom while using
the full set of degrees of freedom for training. The above
considerations suggest that DPMD should enhance consid-
erably the realm of AIMD applications by successfully
addressing the dilemma of accuracy versus efficiency that
has confronted the molecular simulation community for a
long time.
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