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Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson
exchange between electrons and the nucleus, and from the magnetic interaction between electrons and
the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an
enhancement of the effect in diatomic molecules, here using the test system 138Ba19F. Our sensitivity
surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be
suppressed to at least the level of the present statistical sensitivity. We measure the matrix elementW of the
NSD-PV interaction with total uncertainty δW=ð2πÞ < 0.7 Hz, for each of two configurations where W
must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size
anticipated across a wide range of nuclei including 137Ba in 137BaF, where jWj=ð2πÞ ≈ 5 Hz is expected.
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In atoms and molecules, certain aspects of the electroweak
interaction are manifested by nuclear-spin-dependent parity
violation (NSD-PV). NSD-PV primarily arises from two
fundamental causes. The first one is the coupling between
vector-electron and axial-nucleon neutral currents (VeAn)
resulting from Z0 boson exchange. Prior VeAn measure-
ments at low momentum transfer were made with electron-
nucleus scattering; their results are expressed in terms of the
dimensionless constants C2u;d that characterize the VeAn

coupling to up and down quarks [1–4]. The present
experimental uncertainties in C2u;d are ≳70% of the pre-
dicted values [3]. Improved C2u;d measurements would
provide a new check of the standard model. The second
source of NSD-PV is the nuclear anapole moment, which
arises from weak interactions within the nucleus [5]. This
P-odd magnetic moment couples to the spin magnetic dipole
of a penetrating electron [6,7]. A nonzero nuclear anapole
moment has been measured only once [8]. Additional
measurements of anapole moments may enable the deter-
mination of parameters describing the strength of purely
hadronic parity violation (PV) interactions [9,10], which
have proven difficult to measure by other means [11,12].
Here, we demonstrate sensitivity to NSD-PV surpassing

any previous atomic PV measurement, based on a novel
approach using diatomic molecules [13–15]. Because of
their rotational structure, molecules with an unpaired
electron spin systematically have small energy splittings
between opposite-parity hyperfine states, which can be
mixed by NSD-PV. A magnetic field can Zeeman shift
these molecular levels to near degeneracy, which enhances
the mixing due to NSD-PV and gives much larger PV
signals than with atoms. We measure the strength of
the NSD-PV induced mixing using a Stark interference

technique [16,17]. For many molecules with one valence
electron in a 2Σ state, measurements can be interpreted in
terms of the underlying weak-interaction physics with
≲10% accuracy [13,18–21].
Here, we demonstrate our method using the molecule

barium monofluoride (BaF), specifically the isotopologue
138Ba19F. NSD-PVeffects are nonzero only for nuclei with a
nonzero spin I [17]. Since IBa ¼ 0 for 138Ba, here a NSD-PV
signal can arise only from 19F, where IF ¼ 1=2. The valence
electron wave function in BaF has poor overlap with the F
nucleus, so the anticipated effect due to IF is far below our
experimental sensitivity [22]—i.e., an accurate measurement
in this system must be consistent with zero. As such, 138BaF
is a powerful system to identify systematic errors. Here, we
demonstrate control over systematics at a level sufficient for
future measurements in many molecular species where
NSD-PV effects are nonzero, including 137BaF.
The ground electronic state X2Σ of 138BaF is described

by the effective Hamiltonian H¼BeN2þγN ·SþbI ·Sþ
cðI ·nÞðS ·nÞ, where N is the rotational angular momentum,
S ¼ 1=2 is the electron spin, γ is the spin-rotation constant,
b, c are hyperfine constants, and n is a unit vector along
the internuclear axis (ℏ ¼ 1 throughout). The field-free
eigenstates have energy EN ≈ BeNðN þ 1Þ and parity
P ¼ ð−1ÞN , where Be is the rotational constant. We
Zeeman shift sublevels of the NP ¼ 0þ and 1− states to
near degeneracy, using a magnetic field B ¼ Bẑ. Zeeman
shifts are dominated by the coupling to S, with the
approximate Hamiltonian HZ≅−gμBS ·B, where g ≅ −2
and μB is the Bohr magneton. Since Be ≫ γ; b; c, the B
field necessary to bridge the rotational energy E1 − E0 ≈
2Be is large enough to strongly decouple S from I and N.
Thus, we write the molecular states in the decoupled basis
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jN;mNijS;msijI; mIi. Level crossings between different
pairs of opposite-parity states occur at slightly different
values of B because of small energy differences from
γ, b, and c [17].
In 138BaF, the opposite parity levels j0;0ij1

2
;1
2
ij1

2
;mIi≡

jψþ
↑ ðmN ¼0;mIÞi and j1;m0

Nij12 ;−1
2
ij1

2
;m0

Ii≡ jψ−
↓ðm0

N;m
0
IÞi

are degenerate when B ¼ B0 ≈ Be=μB ∼ 0.5 T. The NSD-
PV Hamiltonian is a pseudoscalar that mixes levels with
opposite parity and the same value of the total angular
momentum projection m≡mS þmN þmI . We use the
crossingswheremI ¼ m0

I ¼ 1=2,m0
N ¼ 1, andm ¼ 1 (cross-

ing A), and where mI ¼ m0
I ¼ −1=2, m0

N ¼ 1, and m ¼ 0

(crossing F), in our measurements [23].
The effective NSD-PV Hamiltonian for this system is

ĤEff
p ¼ κ0WPC. Here, WP is an energy that characterizes

the strength of the electron-nucleus overlap, which can be
accurately calculated for many species, including BaF
[17,22]. The dimensionless operator C≡ ðn × SÞ · I=I
gives the angular momentum dependence of ĤEff

p . The
dimensionless parameter κ0 ≈ κ02 þ κ0a encodes the physics
of the weak interactions that lead to NSD-PV; it has
contributions primarily from the VeAn interaction κ02
and from the electron-nuclear anapole moment interaction
κ0a. We seek to determine κ0 by measuring the NSD-PV
matrix elements iWðm0

N;m
0
I; mN;mIÞ≡ κ0WPC̃, where

C̃≡ hψ−
↓ðm0

N;m
0
IÞjCjψþ

↑ ðmN;mIÞi is determined from

standard angular-momentum algebra. (iW and C̃ are pure
imaginary due to time-reversal invariance.)
The measurement sequence for W proceeds as follows.

A beam of 138BaFmolecules enters a magnet, where B ≈ B0

(Fig. 1). A laser beam (LP1) depletes state jψþ
↑ i, by

optically pumping to a short-lived, odd-parity excited state
je−i, at time t ¼ 0. After a free evolution time Tf1,
molecules enter a spatially varying electric field E ¼
E0 sinð2πz=LÞẑ for 0 < z < L. Molecules with velocity
v ¼ vẑ experience a time-dependent field Eðt ¼ z=vÞ ¼
E0 sinðωtÞ with ω ¼ 2πv=L≡ 2π=Te. Because of the
combined Stark and NSD-PV mixing of the levels, pop-
ulation is transferred from the populated state jψ−

↓i to
the originally emptied state jψþ

↑ i. After the E field ends,
molecules experience a second free evolution time Tf2.
Then, another laser beam (LP2) depletes the odd parity jψ−

↓i
state by optical pumping via an even-parity excited state
jeþi. For both depletion lasers, selection rules ensure
that one parity eigenstate of the unresolved ground state
pair is excited, leaving behind a definite parity eigenstate.
We refer to LP1 (LP2) as the first (second) parity state
projection laser. We measure the population of jψþ

↑ i after
the molecules exit the magnet, using laser-induced fluo-
rescence. Although there are conceptual subtleties regard-
ing the evolution of the states as they leave the magnet
[24,25], this description accurately captures the effect of
our measurement sequence.
The Hamiltonian for the near-degenerate states, in the

basis of parity eigenstates, is [26]

H� ¼
�

0

−iW þ dEðtÞ
iW þ dEðtÞ

Δ

�
; ð1Þ

where Δ is the small B-field-dependent detuning from
exact degeneracy, and d is the dipole matrix element [17].
The wave function is

jψðtÞi ¼ cþðtÞjψþ
↑ i þ e−iΔtc−ðtÞjψ−

↓i≡
�
cþðtÞ
c−ðtÞ

�
; ð2Þ

where cþð0Þ ¼ 0 and c−ð0Þ ¼ 1 due to the optical pump-
ing. For W ≪ dE0, the Schrödinger equation at t ¼ T ¼
Tf1 þ Te þ Tf2 yields

cþðTÞ¼
iW
Δ

ðe−iΔT −1Þþ 2dE0ω

ω2−Δ2
e−iΔðTe=2þTf1Þ sin

�
ΔTe

2

�
:

ð3Þ

The measured signal S ¼ N0jcþðTÞj2, with N0 the initial
population of the jψþ

↑ i state, is given by

S≃4N0

�
dE0ω

ω2−Δ2

��
dE0ω

ω2−Δ2
sin2

�
ΔTe

2

�

þ2
W
Δ
sin

�
ΔTe

2

�
sin

�
Δ
2
T

�
cos

�
Δ
2
ðTf1−Tf2Þ

��
. ð4Þ

With this expression we compute the “theoretical” NSD-
PV asymmetry Athy associated with reversal of E0:

FIG. 1. Schematic of the apparatus (top) and evolution of the
level populations (bottom). (1) BaF molecules are formed by laser
ablation into a pulsed jet; both parity states have equal thermal
populations. (2) Molecules enter the magnet, where the states are
nearly degenerate. (3) Laser beam LP1 depletes the jψþ

↑ i state.
(4) A single-cycle sine wave E field (blue) is applied parallel toB.
Stark and NSD-PV interactions mix the opposite parity states
and transfer population into jψþ

↑ i. (5) Laser beam LP2 depletes
the jψ−

↓i state. (6) Molecules exit the magnet, and population
transferred to jψþ

↑ i is detected.
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AthyðΔÞ ¼
SðþE0Þ− Sð−E0Þ
SðþE0Þ þ Sð−E0Þ

¼ 2
W
Δ
ω2 −Δ2

dE0ω

1

sin ½Δ
2
Te�

× sin

�
Δ
2
ðTe þ Tf1 þ Tf2Þ

�
cos

�
Δ
2
ðTf1 − Tf2Þ

�
:

ð5Þ

Here, Δ and E0 are experimental values we control, the
parametersω,Te,Tf1, andTf2 are defined by thegeometry of
the interaction region (IR), themeasuredmolecular velocity v
is v ¼ 616 m=s, and dwasmeasured previously [23]. For the
idealized case where Tf1 ¼ Tf2 ¼ 0 and Δ ≪ ω, Eq. (5)
reproduces the simpler expression in Ref. [17].
The B field is generated by a superconducting magnet

equipped with five superconducting and 14 room temper-
ature (RT) gradient coils for adjusting the field homo-
geneity. B-field homogeneity is critical to obtain a
well-defined value of Δ throughout the IR, and to minimize
systematic errors. An array of 32 magnetometers distrib-
uted around the magnet center is used for initial B-field
mapping with precision δB=B ∼ 0.5 ppm [27]. The Z0 RT
shim coil, which provides a uniform field, is employed
to tune Δ. An additional set of 32 home-built shim coils
(the “minishims”) creates local variations in BðzÞ, to shape
it for maximum homogeneity and/or to generate gradients
for systematic error tests.
The IR enables control over E fields and delivery of laser

light to the molecular beam inside the magnet. The IR has
32 cylindrical electrodes, all with inner diameter 3.18 cm:
two long tubes (used as end caps), 28 rings (∼6 mm long),
and two extra-wide rings (∼17 mm long to mount prisms
that reflect laser light). For PV data, we apply voltages to
these electrodes as required to generate the desired sinus-
oidal EðzÞ field.
We also apply localized E-field pulses to the IR electro-

des, to measure E- and B-field inhomogeneities and to
study possible systematics. A spatially narrow E-field
pulse, centered at position zk, is created by applying
uniform voltages V0 for all electrodes at z < zk, and V0 þ
δV at z > zk. This unipolar field pulse is approximated by
Euðt; tkÞ ¼ Eu

0sechð½t − tk�=σuÞ, where Eu
0 ¼ 0.42 δV=cm,

σu ¼ 0.76 cm=v, and t − tk ¼ ðz − zkÞ=v. In general, for
any weak electric field EðtÞ (and ignoring the effect of W),
the signal S ∝ jẼðΔÞj2, where ẼðΔÞ is the Fourier transform
of EðtÞ [23]. For the unipolar pulse, the signal is SuðΔÞ ∝
sech2ðπΔσu=2Þ.
To measure the B field, we apply unipolar E-field pulses

centered at a series of discrete locations zk, and at each
zk find the detuning required for exact level crossing,
Δk ¼ 2μBðBk − B0Þ, from the peak of SuðΔÞ. Here, Bk is
the actual B field at zk, and B0 is the field required for
Δ ¼ 0. We then shim the B field to minimize the variance
within the set of Δk values. We routinely achieve δB=B ≲
2 × 10−8 (rms) after shimming [Fig. 2(a)], corresponding
to δΔ≲ 2π × 200 Hz.

To measure stray, nonreversing E fields Enr, we apply a
larger, reversible unipolar field pulse �Euðt; tkÞ. The total
field is EðtÞ� ¼ EnrðtÞ � Euðt; tkÞ, yielding the signal
S�ðΔÞ ∝ jẼ�ðΔÞj2. The difference signal SδðΔÞ≡ SþðΔÞ −
S−ðΔÞ arises from interference terms proportional to Eu

0 and
Enr. By applying the reversible pulses at different locations
zk, we determine Ẽnr; from its inverse Fourier transform, we
then find EnrðzÞ. To shim away nonreversing fields, we
generate−Enr with the IR electrodes. We refer to the ambient
nonreversing E field, after shimming, as AnrðzÞ, to distin-
guish it from nonreversing fields under other conditions.
Typically hAnrirms < 6 mV=cm [Fig. 2(b)].
Our strategy for identifying systematic errors is as

follows. We first shim imperfections as described above,
and set upper bounds on their residual nonzero values.
Next, we deliberately amplify a possible experimental
imperfection by a factor A (defined as the ratio of deliberate
to maximum ambient imperfection) and observe its cou-
pling to other ambient imperfections by measuring the
resulting induced offset in W. If we find an offset bounded
by jΔWj, we infer that the systematic error in W under
ambient conditions is no larger than jΔWj=A.
The deliberately amplified imperfections included non-

reversing E fields, B-field inhomogeneities, and offsets
in laser detunings. We employed two different shapes of
deliberately applied Enr fields: the previously defined
unipolar pulse Euðt; tkÞ, and a bipolar pulse, generated
by applying equal and opposite unipolar pulses at adjacent
electrode gaps. For each shape, we performed measure-
ments at several different IR locations. For B-field inho-
mogeneities, we performed measurements using both the
RT shim coils (for large-scale gradients) and the minishim
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FIG. 2. Typical B and E fields after shimming. Vertical dashed
lines indicate the region of interest, between the LP1;2 beam
locations. (a) Magnetic field variations δB vs z, in terms of Δ
via the relation Δ ≈ 2μBB, for measurements taken one week
apart. (b) Shimmed ambient nonreversing E field Anr vs z from
measurements taken many days apart. Shaded areas indicate the
�1σ statistical uncertainty range.
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coils (for localized B-field pulses). In all measurements of
this type, offsets in W with the amplified imperfections
present were not statistically significant, and there were no
significant correlations of results with the sign and/or
amplitude of the applied imperfections.
Only two combinations of imperfections were found to

give definite shifts inW: (1) a linear B-field gradient together
with a unipolar Enr, and (2) a detuning offset of the LP2
laser (δνL2), together with an Enr near the LP2 beam. In the
first case, we found a model that explains the effect and
is amenable to analytic solution. Simultaneous application
of a Gaussian Enr, E

g
nrðtÞ ¼ E1e−ðt=σgÞ2, and a linear B-field

gradient ∂B=∂t≡ γ=ð2μBÞ, results in an asymmetry
Agsl that mimics the NSD-PV effect: AgslðΔÞ ¼
BgslΔ=ðΔ2 þ x2Þ. Here, x ¼ ðE1=E0Þðσg=2Þðω2=

ffiffiffi
π

p Þ,
Bgsl¼ð2= ffiffiffi

π
p ÞðE1=E0Þγðσg=2Þ½ðπ2=2Þ−3−ðσ2gω2=4Þ�, and

we assumed Δ; dE0 ≪ ω, γ ≪ ω2, γ ≪ σ−2g , and cþ ≪ 1.
We tested this analytical model by deliberately applying
known values of Eg

nrðtÞ and ∂B=∂t, and found that the ratio
of experimental and predicted values of the asymmetry
amplitude Bgsl is 1.26� 0.08. This calibration accuracy of
∼25% is sufficient for our current null measurement result
with 138BaF.
The second combination of imperfections leads to a

systematic offset ΔW ∝ EnrδνL2. By measuring the pro-
portionality constant in this relation, and then bounding the
maximum laser detuning and the maximum Enr value
during normal operation, we set a limit on the maximum
associated systematic error in W. Table I presents our final
systematic error budget.
Figure 3 shows asymmetry data from a typical NSD-PV

measurement run. We extract W by fitting the asymmetry
to AðΔÞ ¼ Wfit½AthyðΔÞ=W� þ a0 þ a1Δ with AthyðΔÞ
defined in Eq. (5) and Te¼2π=ω¼87 μs, Tf1 ¼ 7.4 μs,
Tf2 ¼ 8.9 μs, E0 ¼ 1 V=cm, and dAðFÞ=ð2πÞ ¼ 3360

ð3530Þ Hz=ðV=cmÞ for the AðFÞ crossing [23]. The free
parameters in the fit are Wfit plus the auxiliary coefficients
a0 and a1, which were found necessary through extensive
numerical simulations taking into account likely imperfec-
tions in the fields. The offset term a0 is induced by Enr

fields alone, and is found in both simulations and data to be
uncorrelated with systematic errors in W. The auxiliary
parameter a1 is strongly associated with systematic errors
in W; a nonzero a1 serves as a preliminary diagnostic of
such errors.
We performed NSD-PV measurements with several

different Enr shim voltages to check for any dependence
on a specific form of the ambient field Anr. As seen in
Fig. 4, measured W values for different Anr fields are
consistent, as expected. Moreover, the average a1 value is
consistent with zero in all data, as expected in the absence
of significant systematic errors. As a further test for
systematics, we compared results from both level crossings
A and F. The value of the factor C̃ differs between
crossings, while the factor Wmol ≡ κ0WP is the same at
all crossings. Here, C̃A ¼ −0.41i and C̃F ¼ 0.39i, so iW ¼
WmolC̃ must change sign between crossings. By contrast,
the dipole matrix elements dAðFÞ have the same sign and

TABLE I. Systematic error budget (all values in Hz). Uncer-
tainties are added in quadrature.

Parameter
Shift

ΔW=ð2πÞ
Uncertainty
δW=ð2πÞ

Bipolar Enr pulses 0.12
Unipolar Enr pulses 0.16
B-field inhomogeneities 0.24
Linear B-field gradient and −0.01 0.02
unipolar Enr at center
Detuning offset in LP2 and −0.04 0.21
Enr at same position

Total systematic −0.05 0.38
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similar magnitude at both crossings. Thus, systematics due
to a common E-field imperfection would give a systematic
shift of the same sign at both crossings, unlike a true NSD-
PV signal.
Our final results at each crossing are WðAÞ=ð2πÞ ¼

0.29ð53Þð41Þ Hz and WðFÞ=ð2πÞ ¼ 0.00ð55Þð41Þ Hz,
yielding Wmol=ð2πÞ ¼ −0.39ð0.95Þð1.02Þ Hz, where the
first error is statistical and the second is systematic.
Systematic errors are evaluated for the entire set of
measurements (not for each crossing individually); thus,
the total systematic uncertainty is the simple average of
the individual contributions. Since the statistical errors are
not correlated, we average them in quadrature. Combining
statistical and systematic errors in quadrature, our final
result is Wmol=ð2πÞ≡ κ0WP=ð2πÞ ¼ −0.39ð1.40Þ Hz. A
more detailed description of our experiment and its results
is given in Ref. [24].
In 138BaF, our result can be interpreted as a measurement

of κ0ð19FÞ. The calculated overlap of the valence electron
with the 19F nucleus yieldsWPðFÞ=ð2πÞ ¼ 0.05 Hz [22], so
that κ0ð19FÞ ¼ −8ð28Þ. A simple nuclear shell-model pre-
diction yields κ0thyð19FÞ ≈ −0.08 [6,7,17,28]. The consis-
tency of our measurement with this near-zero predicted
value demonstrates the absence of systematic errors outside
our uncertainty.
Determining κ0ð19FÞ was not the primary goal of this

study. It is more useful to compare our sensitivity to that of
previous atomic PV experiments, and to projections for
future molecular NSD-PV measurements. With ≲90 h of
data at each crossing, our statistical uncertainty forWðAÞ or
WðFÞ is δW=ð2πÞ < 0.6 Hz. The previous most sensitive
atomic PV experiment, using Dy, had δW=ð2πÞ ¼ 2.9 Hz
with ∼30 h of data [16]. We next aim to measure NSD-
PV in 137BaF, where WPðBaÞ=ð2πÞ ¼ 160ð15Þ Hz [13,
17–20,29]. The crude expectation is κ0thyð137BaÞ ≈ 0.07,
with roughly equal contributions expected from κ0a and κ02
[17]. With the same uncertainties as here, the projected
uncertainty would be δκ0ð137BaÞ ¼ 0.009, sufficient for a
∼10% measurement. Our projected uncertainty in 137BaF
would represent a factor of ∼7 improvement relative to the
atomic measurement of NSD-PV in 133Cs, where δκ0 ≈ 0.06
[8]. Our technique is sufficiently general and already
sensitive enough to enable measurements across a broad
range of diatomic molecules [17]. This gives the promise of
determining purely hadronic PV interaction strengths [30].
Future measurements with our technique also may be
useful for constraining the strength of PV interactions
mediated by lighter analogues of the Z0 boson [31].
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