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We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles
associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the
moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes
of quantum field theories in the Cachazo-He-Yuan formulation.
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Introduction.—Over the past years, study of scattering
amplitudes revealed many unexpected connections to geo-
metric structures [1–4], allowing us to understand physical
properties of quantum field theories—such as locality or
unitarity—from a different perspective. At the same time,
they equip us with new mathematical tools that vastly
simplify practical calculations. In this work we unravel
another connection to a branch of mathematics called
intersection theory [5–8].
It has recently transpired that intersection theory plays an

important role in string theory amplitudes, where, in
particular, it provides a geometric interpretation of the
Kawai-Lewellen-Tye (KLT) relations between open and
closed string amplitudes, or—in the field-theory limit—
Yang-Mills and Einstein gravity amplitudes [9,10]. Here,
we show that analogous structures appear directly in
scattering amplitudes of ordinary quantum field theories.
We find that they can be understood as intersection
numbers of the so-called twisted cocycles [6–8], which
are certain families of differential forms.
It is instructive to start with an explicit example straight-

away. Let us consider CP2 with inhomogeneous coordi-
nates (x, y), dissected by six hyperplanes defined through

linear equations ffi ¼ 0g. We can easily visualize the real
section of this space with a concrete choice of hyperplanes,
for instance,

The space of our interest is the original manifold with these
hyperplanes removed:

X ¼ CP2

�
⋃
6

i¼1

ffi ¼ 0g: ð1Þ

Associated to it, we can define a differential 1-form ω,
called the twist, with logarithmic singularities along f’s:

ω ¼
X6
i¼1

αid log fi ¼
�
α1
x
þ α3
−1þ x

þ α4
−4þ xþ 4y

þ α5
1=4þ x − y

þ α6
−5=4þ x − 2y

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ωx

dx

þ
�
α2
y
þ α4
−1þ x=4þ y

þ α5
−1=4 − xþ y

þ α6
5=8 − x=2þ y

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ωy

dy; ð2Þ

where α’s are constant coefficients adding up to zero. The

twist 1-form fully characterizes the space X.
On this space we can introduce two differential forms,

φL and φR. We choose them in such a way that they have
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logarithmic singularities on three of the hyperplanes
defined above. For instance, we can take

φL ¼ d log
f2
f3

∧ d log
f3
f5

¼ 5dx ∧ dy
yð1 − xÞð1þ 4x − 4yÞ ; ð3Þ

φR ¼ d log
f2
f3

∧ d log
f3
f6

¼ dx ∧ dy
yð1 − xÞð5 − 4xþ 8yÞ : ð4Þ

These objects are examples of twisted cocycles, which,
roughly speaking, are differential forms on X defined up to
equivalence classes φ ∼ φþ ω ∧ ξ for any d log form ξ.
One can define an invariant pairing called the intersection
number [11]. Its standard definition [6,7] reads

hφL;φRiω ¼ 1

ð2πiÞ2
Z
X
ιωðφLÞ ∧ φR; ð5Þ

where the map ιω turns φL into its compactly supported
version, i.e., one that vanishes in a small neighbourhood of
the hyperplanes ffi ¼ 0g. Note that the integrand would
vanish if it was not for this map. Here we also remark that
hφLj and jφRi belong to different cohomologies, as will be
discussed in the following section. A result of this calcu-
lation reveals a combinatorial formula [12]:

hφL;φRiω ¼ �
X

ffi;fjg∈L;R

1

αiαj
¼ 1

α2α3
: ð6Þ

We review the meaning of the map ιω in Ref. [13], which
also illustrates how factors of αi arise in the denominators.
The above result is a sum over all intersection vertices
of the hyperplanes that are associated to both φL and
φR. In our example, we have L ¼ ðf2; f3; f5Þ and
R ¼ ðf2; f3; f6Þ, which intersect at a single point
ff2 ¼ 0g ∩ ff3 ¼ 0g, and we inserted the correct sign
[12]. An important feature of the above formula is that it is
completely independent of the precise positions of the
hyperplanes, as long as their arrangement is generic; i.e., no
three f’s intersect at a single point.
In this Letter we propose an alternative formula for

computing intersection numbers as an integral localizing on
the points (x�, y�) at which ω vanishes:

hφL;φRiω ¼
Z

dxdyδðωxÞδðωyÞφ̂Lφ̂R

¼
X
ðx�;y�Þ

det−1

2
4

∂ωx∂x
∂ωx∂y

∂ωy

∂x
∂ωy

∂y

3
5φ̂Lφ̂Rjðx;yÞ¼ðx�;y�Þ; ð7Þ

where we used φ ¼ φ̂dx ∧ dy. Here, δ functions should be
understood as multidimensional residue prescriptions
around the zeros of ω. Remarkably, this formula evaluates
to the rational function of α’s [Eq. (6)] for any choice of φL
and φR, and does so in a highly nontrivial manner.

Readers familiar with scattering amplitudes literature
will notice a resemblance of Eq. (7) to the Cachazo-He-
Yuan (CHY) formulas [32,33]. This is not a coincidence. In
fact, CHY formalism uses a particular, singular, arrange-
ment of hyperplanes, for example,

fx ¼ 0g ∪ fy ¼ 0g ∪ f1 − x ¼ 0g
∪ f1 − y ¼ 0g ∪ fx − y ¼ 0g;

with the last hyperplane at infinity, such that the resulting
space X is the moduli space of punctured Riemann spheres,
in this case X ¼ M0;5. Equation (6) can no longer be used
directly, as the arrangement of hyperplanes is not generic.
Nevertheless, the new formula Eq. (7) is still valid. Let us
see how this comes about.
We can organize the coefficients of a particular arrange-

ment into a matrix:

C ¼

f1 f2 f3 f4 f5 f62
64
0 0 1 1 ε

4
4þε
4

1 0 −1 − ε
4

1 −ε
0 1 0 −1 −1 2ε

3
75

1

x

y

; ð8Þ

giving fi ¼ c1i þ c2ixþ c3iy. We set it up such that ε ¼ 1
yields the original arrangement, which deforms into the
singular one as ε → 0. A sign of singularity is that several
3 × 3 minors of C vanish in this limit. Keeping parameters
αconstant for example, with αi > 0 for i ¼ 1; 2;…; 5, the
hyperplanes and zeros of ω behave as follows:

The hyperplane ff6 ¼ 0g moved to infinity. Out of the six
zeros of ω, only 1 and 2 survive at finite positions. Both 3
and 4 get trapped between three hyperplanes and eventually
cease to be zeros of ω since (0,0) and (1,1) are not a part of
the manifold X. Similarly, 5 and 6 shoot off to infinity. This
can be easily verified from the explicit form of the twist in
the strict ε → 0 limit:

ω̃¼
�
s12
x

þ s24
x− 1

þ s23
x− y

�
dxþ

�
s13
y

þ s34
y− 1

þ s23
y− x

�
dy;

ð9Þ

PHYSICAL REVIEW LETTERS 120, 141602 (2018)

141602-2



where we made an identification of α’s with specific
Mandelstam invariants, sab ¼ ðka þ kbÞ2, involving
ingoing lightlike momenta ka. Note that it preserves the
condition

P
6
i¼1 αi ¼ 0 due to momentum conservation.

Using a pair of twisted cocycles, for example,

φ̃L ¼ d log
f1
f5

∧ d log
f5
f4

¼ −
dx ∧ dy

xðx − yÞðy − 1Þ ; ð10Þ

φ̃R ¼ d log
f2
f5

∧ d log
f5
f3

¼ dx ∧ dy
yðy − xÞðx − 1Þ ; ð11Þ

we can evaluate their intersection number at this singular
arrangement via Eq. (7), giving

hφ̃L; φ̃Riω̃ ¼ 1

s23

�
1

s12 þ s13 þ s23
þ 1

s24 þ s34 þ s23

�
;

which is indeed an example of a biadjoint scalar partial
amplitude [33,34]. The limit ε → 0 needs to be taken before
performing the integration Eq. (7). Evaluating it at finite ε
yields identically zero in agreement with Eq. (6), since L ¼
ðf1; f5; f4Þ and R ¼ ðf2; f5; f3Þ have no intersection
points in a generic arrangement. In general, intersection
numbers change discontinuously depending on the top-
ology, but not geometry, of the arrangement.
With this example we illustrated how the new prescrip-

tion Eq. (7) provides a way of calculating intersection
numbers even at singular hyperplane arrangements, such as
the ones giving rise to scattering amplitudes. Let us now
flesh out details of this construction in its full generality.
General formula.—In general, let us consider a generic

arrangement of k hyperplanes on CPm. They are described
with

fi ¼ c1i þ
Xmþ1

a¼2

caiσa; ð12Þ

where σa for a ¼ 2; 3;…; mþ 1 are the inhomogeneous
coordinates on CPm. This corresponds to a point in the
Grassmannian, C ∈ Grðmþ 1; kÞ. A given arrangement is
nonsingular if all maximal minors of C are nonvanishing.
The resulting manifold is X ¼ CPmn ∪k

i¼1 ffi ¼ 0g, and
the twist 1-form ω is defined as in Eq. (2), giving

ω ¼
Xmþ1

a¼2

�Xk
i¼1

αicai
c1i þ

Pmþ1
b¼2 cbiσb

�
dσa; ð13Þ

with
P

k
i¼1 αi ¼ 0 and α’s sufficiently generic.

On this space we introduce the mth twisted cohomology
group [7]:

HmðX;∇ωÞ ¼ fφj∇ωφ ¼ 0g=f∇ωξg; ð14Þ

where∇ω ¼ dþ ω ∧ is the connection and ξ is any smooth
(m − 1)-form on X. The dimension of this group is
d ¼ ðk−2m Þ. Its elements are called twisted cocycles. One
choice of a basis is the one constructed from cocycles of the
form

φL ¼ d log
fLð1Þ
fLð2Þ

∧ d log
fLð2Þ
fLð3Þ

∧ � � � ∧ d log
fLðmÞ
fLðmþ1Þ

¼ φ̂Ldσ2 ∧ dσ3 ∧ � � � ∧ dσmþ1; ð15Þ

for example, with 1 ¼ Lð1Þ < Lð2Þ < � � � < Lðmþ 1Þ < k
[12]. It is known that an arbitrary twisted cocycle can be
expressed in a logarithmic basis [7], such as the one above.
Similarly, the dualmth twisted cohomology is defined with
the connection ∇−ω, whose basis can be chosen to be the
same as in Eq. (15).
Intersection numbers are normally computed using the

definition Eq. (5) with normalization 1=ð2πiÞm for twisted
cocycles φL and φR in the original and dual cohomologies,
respectively; see Ref. [13]. In generic arrangements they
evaluate, up to an overall sign, to [12]

hφL;φRiω ¼ �
X

ff1;f2;…;fmg∈L;R

1

α1α2 � � �αm
: ð16Þ

In singular cases, the above expression requires careful
evaluation using blowups; see Ref. [13].
Here, we give an alternative formula as an integral

localizing on the zeros of ω:

hφL;φRiω ¼ 1

ð−2πiÞm
I
⋀mþ1

a¼2
fjωaj¼ϵg

φLφ̂RQmþ1
a¼2 ωa

: ð17Þ

The above formula is valid even at singular hyperplane
arrangements. We used a more precise notation in terms of
a multidimensional residue around the zeros of Eq. (13), in
place of δ functions localizing the integral like in the
example Eq. (7).
Proof.—Intersection numbers of twisted cocycles satisfy

twisted period relations [6]:

hφL;φRiω ¼ 1

ð2πiÞm
Xd
α;β¼1

Z
Aα

e
R

ωφLH−1
βα

Z
Bβ

e−
R

ωφR:

ð18Þ

By exp
R
ω we denote the multivalued function

Q
k
i¼1 f

αi
i

with some choice of a branch. We have two sets of d
twisted cycles fAαg and fBβg forming bases of their
respective homology groups. Here, H is the intersection
matrix, whose entries are the intersection numbers of these
cycles [6–8]. Since integrals in the above expression do not
generically converge at the same time, they are to be
understood in terms of their analytic continuation. In order
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to use localization arguments, however, we need to define
appropriate bases of cycles which fix this problem.
Following the Picard-Lefschetz prescription [35], we

choose bases of twisted cycles to be the paths of steepest
descent and ascent of exp

R
ω on the same branches,

denoted by fJ αg and fKβg, respectively. By definition,

each of them passes through exactly one critical point σðαÞa

of exp
R
ω, or equivalently a zero of ω. Therefore, cycles

intersect only at these points and the intersection matrix
becomes an identity matrix, Hαβ ¼ δαβ, giving

hφL;φRiω ¼ 1

ð2πiÞm
Xd
α¼1

Z
J α

e
R

ωφL

Z
Kα

e−
R

ωφR: ð19Þ

Cycles fKαg are now paths of steepest descent of
exp−

R
ω. Crucially, this means that each integral on the

right-hand side of the above equation converges. Let us
rescale ω → τω and take τ → ∞. In this limit, each integral
localizes on precisely one of the d critical points:

lim
τ→∞

hφL;φRiτω ¼ 1

ð−τÞm
Xd
α¼1

det−1
� ∂2

R
ω

∂σa∂σb
�
φ̂Lφ̂Rjσa¼σðαÞa

;

where the exponential factors cancel out between the two
integrals for each critical point, and ∂ R ω=∂σa ¼ ωa is
single valued. Since the number of critical points equals the
dimension of the homology group d [7], all zeros of ω are
counted.
On the other hand, intersection numbers hφL;φRiτω are

known to scale homogeneously as τ−m, provided that φL
and φR are expressed in a logarithmic basis [12],
cf. Eq. (16). We therefore conclude that the above locali-
zation formula is exact in τ and hence we can set τ ¼ 1.
Expressing the result in terms of a multidimensional
residue, this proves our claim Eq. (17).
Scattering amplitudes as intersection numbers.—Let us

now consider a special case in which the arrangement of
hyperplanes produces the moduli space of n-punctured
Riemann spheres, X ¼ M0;n. The dimension of X is
m¼n−3, and k ¼ nðn− 3Þ=2þ 1 hyperplanes are given by

⋃
n−2

a¼2

fσa ¼ 0g ⋃
n−2

a¼2

fσa − 1 ¼ 0g ⋃
2≤a<b≤n−2

fσa − σb ¼ 0g;

with the last one located at infinity. We introduce three
coordinates ðσ1; σn−1; σnÞ ¼ ð0; 1;∞Þ and choose the coef-
ficients α for hyperplanes fσa − σb ¼ 0g to be Mandelstam
invariants sab. For massless kinematics they add up to zero
by momentum conservation. There exists a special kin-
ematic region with all sab except for s1;n−1 being positive
[36], where all ðn − 3Þ! zeros of ω lie in distinct chambers
in the real section of the moduli space [37].

The dimension of the cohomology group d undergoes a
huge reduction compared to a generic arrangement, from
(nðn−3Þ=2−1n−3 ) to ðn − 3Þ! in this singular limit. It also gains an
enhanced SLð2;CÞ redundancy, σa→ðAσaþBÞ=ðCσaþDÞ,
with AD − BC ¼ 1.
A basis of twisted cocycles can be written using Parke-

Taylor forms [10] for the ðn − 3Þ! permutations α:

PTðαÞ ¼ d log
σ1;αð2Þ
σαð2Þ;αð3Þ

∧ � � � ∧ d log
σαðn−3Þ;αðn−2Þ
σαðn−2Þ;n−1

¼ ð−1Þn dσαð2Þ ∧ dσαð3Þ ∧ � � � ∧ dσαðn−2Þ
σ1;αð2Þσαð2Þ;αð3Þ � � � σαðn−2Þ;n−1

; ð20Þ

where σab ¼ σa − σb. The twist 1-form ω becomes a linear
combination of scattering equations [38], Ea:

ω ¼
Xn−2
a¼2

�Xn
b¼1
b≠a

sab
σab

�
dσa ¼

Xn−2
a¼2

Eadσa: ð21Þ

With these assignments, intersection numbers Eq. (17)
become scattering amplitudes in the CHY formulation
[32,33,39]. Physically, the twist 1-form Eq. (21) translates
between singularities of the S matrix and boundaries of the
moduli space. Quantum field theory whose amplitudes are
being computed depends on the choice of φL and φR.
For instance, the ingredient Pf0Ψ defined in Ref. [32] can
be expanded in the basis of twisted cocycles, and the
pairings

hPf0Ψ;Pf0Ψiω; hPTðαÞ;Pf0Ψiω; hPTðαÞ;PTðβÞiω
give amplitudes of Einstein gravity, Yang-Mills theory, and
biadjoint scalar, respectively.
In this case, Eq. (18) reduces to the so-called chiral KLT

relation [9,40,41], and τ, which is a rescaling parameter of
the Mandelstam invariants, can be identified with the
inverse string tension α0. In particular, this proves the
following two statements.
(i) The result of chiral KLT is a field-theory scattering

amplitude in the CHY prescription. This provides math-
ematical foundations for more physical considerations
coming from string theory [42–47].
(ii) Since the α0 → 0 limit of a closed string amplitude is

unaffected up to a sign by the α0 → −α0 replacement on one
side of the KLT relation, the field-theory limit of a closed
string amplitude is given by the CHY formula.
Recall that both φL and φR are elements of the twisted

cohomology groups, and, in particular, are required to have
only logarithmic singularities on the boundaries of the
moduli space. Similarly, Mandelstam invariants sab enter-
ing ω are required to add up to zero, making the above
results valid only for massless external states.
Outlook.—Let us put the results of this Letter into a

broader perspective. In Ref. [10] we found that twisted
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cycles and cocycles associated to the moduli space M0;n

play a special role in scattering amplitudes. Three types of
pairings calculate the following classes of amplitudes:

Pairing Class

hcocycle; cocyclei Closed string, CHY
½cycle; cocyclei Open string
½cycle; cycle� Inverse KLT kernel

In this Letter we studied intersection numbers of twisted
cocycles, which fall into the first class. Within it, the
difference between closed string and CHY-type amplitudes
comes from a different choice of the dual cohomology
group; see Ref. [10] and references therein.
Every twisted cocycle has a corresponding cycle, whose

boundaries coincide with logarithmic singularities of the
former. For instance, Parke-Taylor forms [Eq. (20)] map to
associahedra tiling the moduli space [10,48]. Intersection
numbers of both cycles and cocycles can then be described
using adjacency properties of the associahedra [10,49], or
their linear combinations [50–53].
One of the advantages of this way of thinking is that it

allows for geometric understanding of relations between
different amplitudes, in particular the KLT relations [9,10].
They can be summarized using convenient bra-ket notation;
see Ref. [13].
It is natural to expect that similar interpretation in terms

of intersection numbers can be made at higher loops or for
specific theories in four dimensions, especially given recent
evidence that field-theory loop integrands can be obtained
from genus-zero Riemann surfaces [54,55] and obey KLT
formulas [56]. The additional challenge is to consider
nongeneric kinematics on top of singular hyperplane
arrangements.
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