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Time crystals are quantum many-body systems that, due to interactions between particles, are able to
spontaneously self-organize their motion in a periodic way in time by analogy with the formation of
crystalline structures in space in condensed matter physics. In solid state physics properties of space
crystals are often investigated with the help of external potentials that are spatially periodic and reflect
various crystalline structures. A similar approach can be applied for time crystals, as periodically driven
systems constitute counterparts of spatially periodic systems, but in the time domain. Here we show that
condensed matter problems ranging from single particles in potentials of quasicrystal structure to many-
body systems with exotic long-range interactions can be realized in the time domain with an appropriate
periodic driving. Moreover, it is possible to create molecules where atoms are bound together due to
destructive interference if the atomic scattering length is modulated in time.
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Although crystals have been known for years, time
crystals sound more like science fiction than a serious
scientific concept. In 2012 Frank Wilczek initiated a new
research area by suggesting that periodic structures in time
can be formed spontaneously by a quantum many-body
system [1]. While the original Wilczek idea could not be
realized because it was based on a system in the ground
state [2–5], it turned out that spontaneous breaking of
discrete time translation symmetry and self-reorganization
of motion of a periodically driven quantum many-body
system was possible [6]. This phenomenon was dubbed
“discrete time crystals” [7–9] and it was already realized
experimentally [10,11]; for a review see [12].
Apart from the realization of spontaneous breaking of

discrete time translation symmetry, periodically driven
quantum systems can also be employed to model crystal-
line structures in time in a similar way as external time-
independent spatially periodic potentials allow one to
model space crystals [13,14]. It should be stressed that
driven systems with crystalline properties in time do not
require external spatially periodic potentials. Crystal struc-
tures in time emerge due to periodic driving provided it is
resonant with the unperturbed motion of a system. It is
possible to investigate Anderson localization [15] in the
time domain [14,16–18] or many-body localization caused
by temporal disorder [19]. In the following we show that
proper manipulation of higher temporal harmonics of a
periodic perturbation is a perfect tool to engineer a wide
class of condensed matter systems in the time domain

including many-body systems with exotic interactions.
Moreover, it is possible to create molecules where atoms
are bound together via disordered potentials.
Let us begin with a classical single particle system in one

dimension described by the Hamiltonian H0ðx; pÞ. If the
motion of a particle is bounded it is convenient to perform
a canonical transformation to the so-called action-angle
variables [20]. Then, H0 ¼ H0ðIÞ where the momentum
(action) I is a constant of motion and the canonically
conjugate angle θ changes linearly with time, i.e., θðtÞ ¼
Ωtþ θð0Þ where ΩðIÞ ¼ (dH0ðIÞ=dI) is a frequency of
periodic evolution of a particle. Assume we turn on a
periodic driving of the form H1 ¼ λhðxÞfðtÞ where fðtþ
2π=ωÞ ¼ fðtÞ ¼ P

kfke
ikωt and λ determines the strength

of the driving. The spatial part of H1 can be expanded in a
Fourier series hðxÞ ¼ P

nhnðIÞeinθ. A particle is resonantly
driven if the period of its unperturbed motion is equal to an
integer multiple of the driving period, i.e., ω ¼ sΩðI0Þ
where s is an integer number and I0 is a resonant value
of the action. In order to analyze motion of a particle
in the vicinity of a resonant trajectory; i.e., for I ≈ I0,
it is convenient to switch to the moving frame,
Θ ¼ θ − ðω=sÞt, and apply the secular approximation
[20]. It results in the effective time-independent
Hamiltonian, Heff ¼ ðP2=2meffÞ þ λVeffðΘÞ, where
P¼I−I0, the effective mass ð1=meffÞ¼(d2H0ðI0Þ=dI20)
and the potential VeffðΘÞ ¼

P
nhnsðI0Þf−neinsΘ. If the

second order corrections are negligible, which can be
easily monitored [20,21], Heff provides an exact
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description of particle motion in the vicinity of a resonant
trajectory.
The effective Hamiltonian, Heff , indicates that a reso-

nantly driven system behaves like a particle on a ring, i.e.,
0 < Θ ≤ 2π, with a certain effective mass and in the
presence of a time-independent effective potential
VeffðΘÞ. If there are many nonzero Fourier components
of hðxÞ, a proper choice of temporal Fourier components
of fðtÞ allows one to create a practically arbitrary
effective potential. Indeed, any potential on a ring can
be expanded in a series VeffðΘÞ ¼

P
ndne

inΘ and in order
to realize it we can choose the fundamental 1∶1 resonance
(s ¼ 1) and periodic driving with the Fourier components
f−n ¼ (dn=hnðI0Þ). If s > 1, a potential energy structure
is duplicated s times. For s ≫ 1, VeffðΘÞ allows one to
reproduce condensed matter problems where a particle can
move in a potential with s identical wells of arbitrary shape
and with periodic boundary conditions.
Before we illustrate our idea with an example we have to

address two issues. First, so far our approach was classical
but we deal with quantum systems. In order to obtain a
quantum description one can either perform quantization
of the effective Hamiltonian, i.e., ðP;ΘÞ → ðP̂; Θ̂Þ, or
apply a quantum version of the secular approximation
from the very beginning [22]. Both approaches lead to
the same results. Eigenstates of the effective Hamiltonian
in the moving frame correspond to time-periodic Floquet
eigenstates of the original Floquet Hamiltonian,
HF ¼ H0 þH1 − iℏ∂t, in the laboratory frame [21,23].
The second issue is the following: What is the relation of
the class of problems we consider with time crystals? Space
crystals are related to periodic arrangement of particles in
space. If we take a snapshot of a space crystal at some
moment in time (t ¼ const), then we can observe a
crystalline structure in space. Switching to time crystals
the role of time and space is exchanged. We fix position in
configuration space (x ¼ const); i.e., we choose the loca-
tion for the detector, and ask if the probability of clicking
of a detector behaves periodically in time. We have shown
that in the frame moving along a classical resonant orbit,
Θ ¼ θ − ðωt=sÞ, we obtain an effective Hamiltonian that
can describe a solid state problem. Such a crystalline
structure in Θ is reproduced in the time domain if we
return to the laboratory frame, as the relation between Θ
and t is linear. Thus, if we locate a detector close to a
classical resonant trajectory, the probability of detection
of a particle as a function of time reproduces crystalline
structure described by means of Heff in the moving frame.
In Refs. [24,25] it was proven that stable orbits of

classical dissipative systems can reveal quasicrystal tiling
in time. We show that quantum properties of quasicrystals
in time can be investigated; see also [26,27]. In condensed
matter physics quasicrystals are systems that do not have
any minimal part that appears periodically in space.
Nevertheless, two or more unit cells are not placed

randomly because a d-dimensional quasicrystal can be
constructed as a slice through a (2d)-dimensional periodic
crystal [28–30]. We focus on the d ¼ 1 case when one-
dimensional quasicrystal structure can be constructed as a
cut through a two-dimensional square lattice. The cut with
the line whose gradient is the golden ratio generates the
Fibonacci quasicrystal that can also be constructed with the
help of the so-called inflation rule [24]: B → BS and S → B
where B and S denote, e.g., big and small wells, respec-
tively, of a potential energy of a single particle. Successive
application of the inflation rule shows the process of
growing of the quasicrystal, i.e., B → BS → BSB →
BSBBS → BSBBSBSB → ….
In order to illustrate how to realize the Fibonacci

quasicrystal in the time domain experimentally, let us
consider, e.g., a particle that bounces on a vibrating mirror
in the presence of a gravitational field [23,31–33] in a one-
dimensional model. In the coordinate frame vibrating with
the mirror, the mirror is fixed but the gravitation strength
oscillates in time. Then the Hamiltonian of the system, in
gravitational units [23], reads H ¼ ðp2=2Þ þ xþ λxfðtÞ
where fðtÞ ¼ P

kfke
ikωt and ðλ=ω2Þ is related to the

amplitude of the mirror vibration. The secular approxima-
tion leads to the previously derived effective Hamiltonian
withmeff ¼ −ðπ2=ω4Þ and hn ¼ −ð−1Þn=ðn2ω2Þ if the 1∶1
resonance condition (s ¼ 1) is fulfilled. A proper choice of
fðtÞ allows one to realize the effective potential VeffðΘÞ
that reproduces any finite Fibonacci quasicrystal. In Fig. 1
we show what kind of driving leads to a quasicrystal with
the total number of big and small potential wells given by
the seventh Fibonacci number. Transport properties in the
quasicrystal that can be analyzed with the help of the
effective Hamiltonian in the frame moving along the 1∶1
resonant orbit are observed in the time domain in the
laboratory frame.
Now we demonstrate that periodically driven many-body

systems allow for realization of solid state problems with
exotic interactions. Let us illustrate this idea with ultracold
atoms bouncing on a mirror that oscillates harmonically
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FIG. 1. Time quasicrystal: a particle bouncing on a vibrating
mirror in a gravitational field in a one-dimensional model. The
1∶1 resonance condition is assumed. Left: the effective potential
VeffðΘÞ with the quasicrystal structure corresponding to the
seventh Fibonacci number. Right: Fourier components of the
periodic vibration of the mirror, ðfðtÞ=ω2Þ ¼ P

kðfck cos kωtþ
fsk sin kωtÞ, that result in VeffðΘÞ presented in the left panel. Full
symbols are related to fck, open symbols to fsk. The inset of this
panel shows (fðtÞ=ω2) over one period.
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with frequency ω. If the s:1 resonance condition is fulfilled,
the single-particle effective Hamiltonian in the moving
frame reads Heff ¼ ðP2=2meffÞ þ V0 cosðsΘÞ where
meff ¼ −ðπ2s4=ω4Þ and V0 ¼ −(λð−1Þs=ω2). Let us
assume s ≫ 1 and V0 sufficiently big so that in the
quantum description eigenvalues of Heff form well-
separated energy bands and eigenstates are Bloch waves
eikΘvkðΘÞ where vk(Θþ ð2π=sÞ) ¼ vkðΘÞ. Note that for
a fixed position in the laboratory frame, θ ¼ const, the
periodic Bloch waves character emerges in time,
eikðθ−ωt=sÞvk(θ − ðωt=sÞ), with the period ð2π=ωÞ.
Because of the negative effective mass meff , the effective
Hamiltonian Heff is bounded from above, not from below.
Therefore, the first energy band possesses the highest
energy. For simplicity, let us restrict ourselves to the first
band and choose as the basis in the corresponding Hilbert
subspace the Wannier states wj ¼ w(Θ − jð2π=sÞ) where j
denotes at which site of the effective potential a Wannier
function is localized [34]. In the laboratory frame the
Wannier states wjðx; tÞ describe localized wave packets
moving along the resonant trajectory. We assume the
normalization

R s2π=ω
0 dthwjjwji ¼ 1. Thus, s sites of the

effective potential in the moving frame correspond to s
Wannier wave packets evolving in the laboratory frame.
The width of the first energy band of Heff is determined by
J ¼ −2

R s2π=ω
0 dthwiþ1jHeff jwii, which is an amplitude of

nearest neighbor tunnelings.
In ultracold atomic gases interactions are described by

the contact Dirac-delta potential, g0δðxÞ, where g0 is
determined by the atomic scattering length, which can
be modulated in time by means of a Feshbach resonance
[35]. We are going to show that these contact interactions
between atoms can result in exotic long-range interactions
in the effective description of the resonantly driven many-
body system (effective long-range interactions in the phase
space crystals [13,36] have been considered in [37,38]; see
also [39]). For example in the case of bosonic particles,
when we restrict ourselves to the Hilbert subspace spanned
by Fock states j…; nj;…i, where nj is the number of atoms
occupying a mode wj, we obtain a many-body effective
Hamiltonian of the Bose-Hubbard form,

Ĥeff ¼ −
J
2

X

hi;ji
â†i âj þ

1

2

X

i;j

Uijâ
†
i â

†
j âjâi; ð1Þ

where the bosonic operators âj annihilate particles in
modes wj’s and Uij ¼

R s2π=ω
0 dtg0ðtÞuijðtÞ with uijðtÞ ¼

2
R
∞
0 dxjwij2jwjj2 for i ≠ j and uii ¼

R
∞
0 dxjwij4 [14],

where we assume that the atomic scattering length g0ðtÞ
can be modulated in time. The Hamiltonian (1) is valid
provided the interaction energy per particle is always
smaller than the energy gap between the lowest and first
excited energy bands of the single-particle system. A given
interaction coefficient Uij is determined mostly by g0ðtÞ at
the moment when the corresponding wave packets overlap.

Suitable modulation of the scattering length g0ðtÞ allows
us to shape the interactions in (1). In order to perform a
systematic analysis one can apply the singular value
decomposition of the matrix uijðtÞ where (i; j) and t are
treated as indices of rows and columns, respectively. Left
singular vectors tell us which sets of interaction coefficients
Uij can be realized, while the corresponding right singular
vectors give the recipes for g0ðtÞ. In Fig. 2 we present an
example of the interaction coefficients and the correspond-
ing function g0ðtÞ. In this example the magnitude of the
interactions of a particle located at a given site with other
particles located at the same or distant sites is nearly the
same, but their repulsive or attractive character changes in
an oscillatory way.
Time is a single degree of freedom and it is hard to

imagine multidimensional time crystals. However, we are
going to show that resonantly driven systems can reveal
properties of two-dimensional or three-dimensional space
crystals in the time domain. Let us begin with a single
particle bouncing between two mirrors that oscillate har-
monically in two orthogonal directions with frequency ω;
see Fig. 3—generalization to the three-dimensional case is
straightforward. The single-particle Hamiltonian reads
H ¼ ½ðp2

x þ p2
yÞ=2� þ xþ yþ λx cosωtþ λy cosðωtþ φÞ

where φ is the relative phase of the mirror oscillations.
Assuming that for each of the two independent degrees of
freedom the s:1 resonance condition is fulfilled we obtain
(in terms of the action-angle variables and in the moving
frame Θj ¼x;y ¼ θj − ðωt=sÞ) the effective Hamiltonian,
Heff ¼ ½ ðP2

x þ P2
yÞ=2meff � þ V0½cosðsΘxÞ þ cosðsΘyÞ�,

which describes a particle in a two-dimensional square
lattice. For s ≫ 1, eigenstates of Heff are Bloch waves
eiðkxΘxþkyΘyÞvkxðΘxÞvkyðΘyÞ. When we fix a position in
the laboratory frame, i.e., we fix θx and θy, periodic
character of Bloch waves emerges in time,
ei½kxθxþkyθy−ðkxþkyÞωt=s�vkx(θx − ðωt=sÞ)vky(θy − ðωt=sÞ).
Different fixed values of θx and θy allow us to observe in
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FIG. 2. System with exotic interactions: ultracold atoms bounc-
ing on a harmonically oscillating mirror in a one-dimensional
model. The 20∶1 resonance condition is fulfilled and the many-
body system is described by the Hamiltonian (1). The left panel
shows the interaction coefficientsUij corresponding to the scatter-
ing length g0ðtÞ that is presented in the right panel. The frequency
ω ¼ 2.8 of the mirror oscillations and λ ¼ 0.1 which result in
J ¼ 3.7 × 10−5 and the gap of 302J between the lowest and
first excited energy bands. Temporary interaction coefficients
ðs2π=ωÞjg0ðtÞjuijðtÞ ≤ 85J.
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the time domain different cuts of the square lattice
described by Heff. We restrict ourselves to the first energy
band of Heff and define the Wannier state basis Wj ¼
wx(Θx − jxð2π=sÞ)wy(Θy − jyð2π=sÞ) where j ¼ ðjx; jyÞ
denotes at which site of the effective potential a Wannier
function is localized. In the laboratory frame the Wannier
states Wjðx; y; tÞ describe localized wave packets moving
along resonant trajectories. The shape of the trajectories
depends on the relative phase φ of the mirror oscillations.
For φ ≠ ðπ=2Þ there are s different trajectories in the
configuration space and s wave packets Wjðx; y; tÞ mov-
ing along each of them; see Fig. 3. Thus, s2 sites of the
effective potential in the moving frame correspond to s2

Wannier wave packets evolving in the laboratory frame.
Switching to the many-body case we obtain, for ultracold
bosons, a two-dimensional version of the Hamiltonian (1).
If the scattering length is not modulated in time, i.e.,
g0ðtÞ ¼ const, the on-site interactions are dominant and
the system reproduces, in the moving frame, a two-
dimensional squared lattice problem with on-site inter-
actions [34]. If we locate detectors at different positions in
the laboratory frame, the time dependence of the proba-
bilities of detection reflects cuts of the two-dimensional
square lattice; see Fig. 3.
Finally, let us show that periodic driving allows one

to create a molecule where Anderson localization is

responsible for the binding of two atoms. Assume that
two atoms move on a ring and their scattering length is
modulated in time employing a Feshbach resonance so that
the Hamiltonian of the system reads H ¼ ½ðp2

1 þ p2
2Þ=2� þ

2πλδðθ1 − θ2ÞfðtÞ where λ is a constant, fðtÞ ¼P
k≠0fke

ikωt, and θ1;2 denote positions of the atoms on
the ring (see Fig. 4). If the first atom is moving in the
clockwise direction with momentum p1 ≈ ω, and the
other in the anticlockwise direction with p2 ≈ −ω,
then the secular approximation results in Heff ¼
½ðP2

1 þ P2
2Þ=2� þ λVeffðΘ1 − Θ2Þ in the moving frame,

i.e., Θ1 ¼ θ1 − ωt and Θ2 ¼ θ2 þ ωt. Interactions between
atoms are described by the effective potential Veff ¼P

nf−2ne
inðΘ1−Θ2Þ whose shape can be engineered at will

by a suitable choice of the Fourier components fk of the
periodic driving. For example if fk ¼ ð1= ffiffiffiffiffi

k0
p Þeiφk for

jkj ≤ ðk0=2Þ and 0 otherwise, where φk ¼ −φ−k are ran-
dom variables chosen from a uniform distribution, the
atoms interact via the effective disordered potential char-
acterized by the correlation length ð ffiffiffi

2
p

=k0Þ and the
standard deviation λ. Then, eigenstates ψðΘ1 − Θ2Þ of
Heff are Anderson localized around different values θ0
of the relative coordinate [15], i.e., jψ j2 ∝ e−jΘ1−Θ2−θ0j=l0 ,
provided the localization length l0 ≪ 2π: within the Born
approximation l0 ¼ ðEk20=πλ2Þ, which is valid when
ðλ2=k20Þ ≪ E ≪ ðk20=4Þ, where E is energy of the system
in the moving frame [17,40]. Hence, we are dealing with a
situation where two atoms are bound together not by
attractive interactions but due to destructive interference,
i.e., due to the Anderson localization phenomenon induced
by disordered mutual interactions [21]. If atoms are
identical bosons (fermions), an eigenstate must be sym-
metric (antisymmetric) under their exchange. This sym-
metry is easily restored because we can exchange the role
of the atoms. That is, the first atom can move in the
anticlockwise direction, p1 ≈ −ω, while the other one can
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FIG. 3. Time crystal with properties of a two-dimensional space
crystal: ultracold atoms bouncing between two perpendicular and
harmonically oscillating mirrors with ω ¼ 1.05, λ ¼ 0.02, and
φ ¼ ðπ=2Þ. The 5∶1 resonance conditions are fulfilled and the
many-body system is described by a two-dimensional version of
the Bose-Hubbard Hamiltonian (1). For g0ðtÞ ¼ const, the on-site
interactions are dominant, i.e., Uii=g0 ∈ ½0.2; 0.3�J, where differ-
ent values correspond to different classical trajectories, while
Uij≠i=g0 < 0.07J. The left panel shows 25 Wannier wave
packets, i.e., ρðx; y; tÞ ¼ P

jjWjðx; y; tÞj2, at t ¼ ð4=ωÞ and
trajectories along which they propagate—dots indicate positions
of the centers of the wave packets. Two perpendicular mirrors are
located at x ¼ 0 and y ¼ 0 and they form a ðπ=4Þ angle with
respect to the gravitational force F⃗g. Right panels present
ρðx; y; tÞ at ðx; yÞ ¼ ð90; 90Þ (a) and (82,82) (b) versus t: these
plots reflect cuts of a square lattice described by the Bose-
Hubbard model in the moving frame. Numbers in parentheses
indicate which lattice sites j ¼ ðjx; jyÞ are located along the cuts.
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FIG. 4. Two atoms bound together due to destructive interfer-
ence. The left panel shows a schematic plot of an experiment
where two distinguishable atoms move on a ring in opposite
directions with momenta �ω. Resonant modulation of atomic
scattering length allows one to create a molecule where the atoms
are bound together due to destructive interference; i.e., in the
moving frame eigenstates of the system are Anderson localized.
The right panel presents probability densities for detection of the
atoms at θ1 ¼ θ2 in the laboratory frame versus t for two
eigenstates related to energies E ¼ 6020 (orange line) and
10460 (blue line) for λ ¼ 5660 and k0 ¼ 500.
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move in the clockwise direction, p2 ≈ ω. Consequently,
proper Floquet eigenstates for bosons or fermions,
in the laboratory frame, read ψðθ1 − θ2 − 2ωtÞ �
ψðθ2 − θ1 − 2ωtÞ. Experimental demonstration of two
atoms bound due to destructive interference seems straight-
forward if atoms are prepared in a toroidal trap [41–43].
In summary, we have shown that a wide class of

condensed matter problems can be realized in the time
domain if single-particle or many-body systems are reso-
nantly driven. It opens up unexplored territory for inves-
tigation of condensed matter physics in time and for the
invention of novel time devices because time is our new
ally. As an example we have demonstrated that periodic
driving allows one to realize molecules where atoms are
bound together not due to attractive mutual interactions but
due to destructive interference.
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