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Despite decades of research, the question of whether solutions and melts of highly entangled polymers
exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial.
From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive
curve of shear stress σ as a function of shear rate _γ (for states of homogeneous shear) is monotonic, or has a
region of negative slope, dσ=d_γ < 0, which would trigger banding. Attempts to settle the question
experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of
the free surface where the sample meets the outside air, known as “edge fracture.” Here we show by
numerical simulation that in fact even only very modest edge disturbances—which are the precursor of full
edge fracture but might well, in themselves, go unnoticed experimentally—can cause strong secondary
flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the
underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the
absence of edge effects.
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Polymeric fluids display exotic nonlinear rheological
(deformation and flow) properties, stemming from the
complicated underlying dynamics of their constituent
entangled chainlike molecules. When subject to an
imposed shear, for example, they commonly exhibit a
heterogeneous flow response in which bands of differing
shear rates form, with layer normals in the flow-gradient
direction. This phenomenon of “shear banding” has been
widely observed during the transient, time-dependent
process, whereby a steady flowing state is established
out of an initial rest state, following the switch on of a
flow [1–3] or load [2–4], and in the perpetually time-
dependent protocol of large amplitude oscillatory shear
[5,6]. It has been successfully captured [7–12] in rheo-
logical constitutive models based on molecular theories
[13,14] of polymer dynamics that posit the dominant mode
of stress relaxation to be one of “reptation,” in which any
molecule snakes out of an effective tube formed from
entanglements with its neighbors.
Perhaps surprisingly, the more basic question of whether

shear bands form the ultimate steady flowing state in
entangled polymers remains intensely controversial,
despite decades of research. From a theoretical viewpoint,
an important issue concerns whether the underlying con-
stitutive curve of shear stress σ as a function of shear rate _γ
(for states of stationary homogeneous shear) is monoton-
ically increasing, or instead has a region of negative slope,
dσ=d_γ < 0. The latter would necessarily imply homo-
geneous shear to be unstable, leading to bulk banding in
the steady flowing state. While the original reptation theory
[14] predicted nonmonotonicity, more recent extensions to
it incorporating the additional molecular processes of

convective constraint release and chain stretch relaxation
[15–17] can, at least in principle, restore monotonicity and
(in melts) eliminate steady state banding. (In solutions with
a strong enough coupling between flow and concentration
fluctuations, steady state banding has been predicted to
occur even if the constitutive curve is monotonic [18–21].)
Whether they do so in practice, however, depends on the
number of entanglements per molecule and on the level of
convective constraint release, which is a priori unknown.
Just as this debate remains unsettled theoretically, studies

aimed at resolving it experimentally have likewise proved
controversial. The experimentally measured flow curve
σð _̄γÞ is always monotonically increasing but with a char-
acteristically rather flat region spanning, typically,
1–4 decades in shear rate [4,22–25], depending on the
fluid in question. Whether the underlying constitutive curve
σð_γÞ is itself monotonic is not settled simply by measuring
the flow curve, however, because a nonmonotonic con-
stitutive curve would lead to shear banding, which restores
a monotonic flow curve σð _̄γÞ for the composite banded
flow, with _̄γ the shear rate averaged across the bands. (For
homogeneous flow, _̄γ ¼ _γ everywhere, and the constitutive
curve and flow curve coincide.)
The question of whether shear bands are present must

therefore instead be investigated by explicit velocimetric
studies of the flow field inside the sample. Tapadia and
Wang [26] gave evidence for steady state shear banding in
entangled polymer solutions, suggesting a nonmonotonic
underlying constitutive curve. In contrast, Hu et al. [23]
observed shear banding only transiently during shear
startup, giving way at longer times to homogeneous shear,
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suggesting a monotonic constitutive curve. Later work on
more highly entangled samples did however report long-
lived shear bands in some experimental runs, but not in
others [4], even (in some cases) when repeated for the same
imposed loads or flow rates.
While the aim in these velocimetry experiments is to

measure the fluid’s true bulk flow behavior, in practice all
rotational shear rheometers have a free surface where the
fluid sample meets the outside air. Care is obviously then
needed to measure the flow field as far into the sample as
possible, at a depth from the surface that is many multiples
of the gap width between the shearing plates. Even then,
however, polymeric fluids are known to be highly suscep-
tible to “edge fracture” [27–30], in which this free surface
between the fluid sample and air destabilizes when the fluid
is sheared. This can lead to secondary flows penetrating
some depth into the bulk. Indeed, edge fracture was
discussed as a possible source of the variability between
runs mentioned above [4]. Significant possible edge frac-
ture in experiments concerning the presence or absence of
shear banding in entangled polymers has likewise been
discussed extensively in Refs. [22,24,31–36].
In this Letter, we report, for the first time, simulations

exploring the complicated dynamical interplay between
these surface and bulk instabilities in sheared polymeric
fluids. Our principal contributions are threefold. First, we
show that only modest deformations of the sample edge—
which are the precursors of true edge fracture but may (in
themselves) go unnoticed—can indeed lead to secondary
flows that penetrate some distance into the fluid bulk.
Second, for a material with a bulk constitutive curve that is
rather flat (but still monotonically increasing, e.g., com-
parable to that measured experimentally in Ref. [23]), these
secondary flows can be very strong, and they can further-
more invade the bulk to up to depths of 10–20 gap widths in
from the sample edge, which is the maximum depth
typically attained experimentally due to the finite aspect
ratio of any sample. Third, these secondary flows take the
form of shear bands. Importantly, this is true despite the
constitutive curve being monotonic in our simulations,
precluding true bulk shear banding in the absence of any
surface disturbance. This Letter therefore shows that only
modest precursors of the surface transition of edge fracture
can precipitate a strong quasibulk shear banding effect far
into the sample.
As shown in Fig. 1, we consider a planar slab of fluid

sheared at rate _̄γ between hard walls at y ¼ 0; Ly. The flow
direction is denoted x̂ and the flow-gradient direction ŷ.
The surfaces of the fluid sample in the vorticity direction ẑ
are in contact with the air. The sample length in that
direction (in the initial unsheared state) isΛ. Our simulation
box has length Lz, with periodic boundary conditions in z.
(Only its left half is shown in Fig. 1.) At the plates we
impose boundary conditions of no slip and no permeation.
Translational invariance is assumed in x.

The total stress T in any fluid element is taken to
comprise an isotropic contribution with pressure p, a
Newtonian contribution characterized by a viscosity η,
and a slow viscoelastic contribution Σ from the polymer
chains. The Newtonian part models contributions from both
the background solvent, and also from fast intrachain
polymeric relaxation modes. We assume conditions of
creeping flow, with the force balance condition
∇ · T ¼ 0. This gives η∇2v þ ∇:Σ − ∇p ¼ 0 inside the
fluid and ηa∇2v − ∇p ¼ 0 in the outside air, with ηa the air
viscosity. The pressure field pðr; tÞ is determined by
enforcing incompressible flow, such that the velocity field
vðr; tÞ obeys ∇ · v ¼ 0. The dynamics of the viscoelastic
stress Σ is taken to obey the diffusive Giesekus model [37]:

DtΣ ¼ 2GDþ Σ · ∇v þ ∇vT · Σ −
1

τ
ðΣþ αΣ2Þ þD∇2Σ;

ð1Þ
in which DtΣ≡ ∂tΣþ v:∇Σ captures Galilean invariance;
∇vαβ ¼ ∂αvβ and D ¼ 1

2
ð∇v þ ∇vTÞ. The first three terms

on the rhs of Eq. (1) capture the loading of viscoelastic
stress in an imposed flow. The next capture relaxation on a
time scale τ, back towards an unstressed state, with α
characterizing the apparent change in relaxation rate as the
chains become anisotropically aligned in flow. The final
diffusive term ensures that the structure of the interface
between any shear bands that form is properly accounted
for [38]. To test that our results are robust to choice of
constitutive model, we have verified that the physical
picture reported below also holds in the diffusive
Johnson-Segalman model [39] (results not shown).
The air-fluid coexistence is captured via a phase field

(Cahn-Hilliard) approach [40,41], with a mobility M for
air-fluid intermolecular diffusion, a scale Gμ for the free
energy density of demixing, and a slightly diffuse air-fluid
interface of thickness l. This gives an interfacial tension
Γ ¼ 2

ffiffiffi

2
p

Gμl=3. In having a diffuse interface, our simu-
lations are capable of capturing any motion of the contact
line along the wall that arises in flow [41]. Our numerical
scheme is described in Ref. [30].
We choose units of length in which the gap width

Ly ¼ 1, of time, in which the viscoelastic relaxation time
τ ¼ 1, and of stress, in which the viscoelastic modulus
G ¼ 1. We set the equilibrium contact angle of the fluid-air
interface at the plates θ ¼ 90°, and we have checked that
our findings are robust to variations in this quantity.
We set the inverse air gap size Ly=ðLz − ΛÞ ¼ 0.25, the
air-fluid interface width l=Ly ¼ 0.01, the inverse mobility
for intermolecular diffusion, l2=MGμτ ¼ 0.01–0.1, the
stress diffusivity D ¼ 10−4, and the air viscosity ηa=Gτ ¼
0.006–0.02; all converged to their appropriate small limit,
along with the numerical grid and time steps.
Important physical quantities to be explored are the

dimensionless surface tension Γ=GLy ¼ Γ, the sample

PHYSICAL REVIEW LETTERS 120, 138002 (2018)

138002-2



aspect ratioΛ=Ly ¼ Λ, Newtonian viscosity η=Gτ ¼ η, and
imposed shear rate _̄γτ ¼ _̄γ. Among these, we vary the
viscosity η in order to vary the shape of the underlying
constitutive curve σð_γÞ, for a fixed value of the anisotropy
parameter α ¼ 0.8. (We could instead have fixed η and
varied α, and we have checked that this gives the same
physical picture as that reported below.) In particular, the
width of the plateau region of the constitutive curve will
prove an important quantity in what follows. Accordingly,
we define the extrema of the plateau region as the shear
rates _γh, _γl that correspond to �5% of the stress at the
flattest point, then quantify the plateau width via their
logarithmic difference n ¼ logð_γh=_γlÞ. We shall report our
phase diagrams below both in terms of the viscosity η − ηc
(where ηc ¼ 0.005918 is the value below which the
constitutive curve is nonmonotonic) and n; the latter is
directly set by the former (for our fixed α), and is the more
directly accessible quantity experimentally.
The surface tension Γ and the second normal stress

Tyy − Tzz ¼ N2ð _̄γÞ, which depends on the imposed shear
rate _̄γ, together control the tendency or otherwise of the
fluid-air interface to show edge fracture, as explored in
Refs. [27,30]. For a fixed shear rate, the interface is stable at
high surface tension Γ. At intermediate Γ, the interface
bows modestly but remains otherwise intact. We define the
degree of bowing d as the difference between the rightmost
and leftmost z positions of the interface, as shown in Fig. 1.
At low Γ, full edge fracture occurs, with a catastrophic
interfacial breakup that would signal the end of any reliable
experimental run. Here we focus on the intermediate
regime, with modest edge bowing that is a precursor to
full edge fracture, but might well (in itself) go unnoticed
experimentally. Typical orders of magnitude of Γ ¼ Γ=GLy

are 0.001–0.1 for synthetic polymers and 0.1–10.0 for
DNA solutions [2,4,23,42–44].
We now present our results. The basic phenomenon that

we report is exemplified by the snapshots of Fig. 1. Only
modest bowing of the fluid-air interface is apparent in each
case, consistent with the preceding remark. However,
radically different bulk behavior is seen between the two
snapshots. This can be explained by the differing shape of
their underlying constitutive curves. The upper snapshot
pertains to the moderately sloping constitutive curve (a) of
Fig. 2 (left). In this case, the disturbance at the sample edge
has virtually no effect on the bulk. In contrast, the lower
snapshot pertains to the flatter constitutive curve (b) in
Fig. 2. Here, any perturbations caused by the modest
disturbance at the sample edge are strongly amplified by
the flatness of the constitutive curve to cause a strong shear
banding effect in the shear rate _̃γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2D∶D
p

, which invades
far into the bulk, many gap widths in from the sample edge.
Crucially, this is true despite the constitutive curve being
monotonically increasing, precluding true bulk shear band-
ing in the absence of edge effects.

To further exemplify this behavior, we show in Fig. 2
(right) the velocity profiles vxðyÞ measured at depths z ¼
1; 2; 4; 8Ly into the sample from the fluid-air interface. For
the snapshot of Fig. 1 (top), these all show near homo-
geneous shear, with the local shear rate _γ ¼ ∂vx=∂y
independent of y, apart from some weak heterogeneity
in the profile very close to the sample edge, z ¼ Ly. In
contrast, for the lower snapshot of Fig. 1, the velocity
profiles show noticeable shear banding that persists many
gap widths in from the sample edge. For use below, we note
that the “degree of banding” can be quantified for any such
profile as Δ_γ ¼ ð_γmax − _γminÞ= _̄γ, with _γmax the maximum
shear rate at any point across y (which occurs at y ¼ 0 in
Fig. 2, right), and _γmin the minimum (which occurs at
y ¼ 1.0). _̄γ is the gap-averaged value. By inspecting
many profiles, we conservatively adopt Δc

_γ ¼ 0.15 as the
minimum threshold for visually obvious banding.

(a)

(b)

FIG. 1. Shear-rate colormaps in the steady flowing state.
Top: A fluid with the moderately sloping constitutive curve
shown as (a) in Fig. 2 (left) exhibits homogeneous bulk flow.
Bottom: A fluid with the flatter constitutive curve (b) in Fig. 2
(left) shows strong apparent quasibulk shear banding. Dashed
colored lines show positions at which the velocity profiles of
Fig. 2 (right) are taken. Parameters: Λ ¼ 16.0, _̄γ ¼ 4.7, Γ ¼ 0.16
with η ¼ 0.02, 0.006 giving n ¼ 0.45, 1.06 (top, bottom).

(a)

(a)

(b)
(b)

FIG. 2. Left: Constitutive curves for (a) moderately and
(b) strongly shear thinning fluids, with Newtonian viscosities
η ¼ 0.02 and 0.006 giving plateau widths n ¼ 0.45 (blue arrow)
and 1.06 (red arrow), respectively. The shear rate to which the
snapshots in Fig. 1 correspond is shown by the circles.
Right: Plots of the velocity profiles (and, inset, shear rate profiles)
pertaining to the snapshots of Fig. 1 at the depths z ¼ 1; 2; 4; 8Ly

into the sample from the free surface, for η ¼ 0.02 (n ¼ 0.45)
(top) and η ¼ 0.006 (n ¼ 1.06) (bottom).
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So far, we have presented results for a single value of the
surface tension Γ, separately for a moderately sloping
constitutive curve (larger η) and a flatter curve (smaller
η), with an imposed shear rate _̄γ near the flattest part of the
constitutive curve in each case. We now explore more fully
the behavior as a function of Γ; _̄γ and η. To do so, we
present in Fig. 3 (bottom) colorscales of the degree of
banding Δ_γ at the cell midpoint z ¼ 8.0 for a sample of
length Λ ¼ 16.0. The right panel shows results for η ¼
0.006 [which we recall gives the flatter constitutive curve
(b) with plateau width n ¼ 1.06 in Fig. 2, (left)] in the plane
Γ; _̄γ of surface tension, and imposed shear rate. (So this
panel explores a range of shear rates across one particular
constitutive curve.) The left panel shows results in the plane
Γ, n of surface tension, and the parameter nðηÞ that
characterizes the shape of the constitutive curve, for a
fixed imposed shear _̄γ ¼ 4.7, near the flattest part of the
constitutive curve in each case. (So, this panel explores a
collection of constitutive curves with increasingly broad
plateau regions for increasing n leftwards along the
horizontal axis.) The corresponding panels in Fig. 3
(top) show the degree of bowing d of the fluid-air interface,
each directly counterpart to the degree of banding in the
panel underneath.
The top panels confirm the scenario discussed above

from Ref. [30]. For any given imposed shear rate _̄γ, the
fluid-air interface is undisturbed for high surface tension Γ,

with zero interfacial bowing, d ¼ 0. For lower values of the
surface tension, below the red thick line, the interface bows
modestly when the sample is sheared, giving d ¼ OðLyÞ.
(For lower surface tensions still, not shown in Fig. 3, full
fracture occurs, giving a catastrophic breakup of the
interface.) It is important to note, however, that the degree
of interfacial bowing d does not appear to vary significantly
with the overall shape of the constitutive curve as pre-
scribed by η in the top left panel, once comfortably inside
the unstable region.
The degree of shear banding in the plane of surface

tension and strain rate in the bottom right panel of Fig. 3
pertains to the flatter constitutive curve (b) of Fig. 2 (left).
As can be seen, the region of visually apparent banding (as
enclosed by the thick black line) arises for shear rates
_̄γ ¼ 2.0–9.0, in the flattest region of the constitutive curve.
For the fixed strain rate _̄γ ¼ 4.7 in the flattest part, the
degree of banding as a function of surface tension, and the
overall shape of constitutive curve is shown in the bottom
left panel of Fig. 3. A clear relation is seen here between the
increasing breadth n of the plateau region in the constitutive
curve (leftwards along the horizontal axis), and the increas-
ing degree of shear banding many gap-widths into the
sample. This is true even though the degree of fluid-air
interfacial bowing (top left panel) does not vary much with
increasing n, as emphasized above. This is important,
because it shows that strong quasibulk shear banding
can arise for highly shear thinning fluids, even with a
monotonically increasing constitutive curve, even given
only modest bowing of the fluid-air interface.
So far, we have presented results for one particular

sample lengthΛ ¼ 16.0, for the degree of banding at its cell
midpoint z ¼ 8.0. In Fig. 4, we explore the degree of
banding as a function of the position z in from the sample
edge, for a range of different cell sizes. The left panel shows

FIG. 3. Colormaps of (top) the degree of bowing d of the air-
fluid interface and (bottom) the degree of shear banding Δ_γ at the
cell midpoint z ¼ 8.0 for a sample of length Λ ¼ 16.0. These are
shown (left) in the plane of surface tension and η − ηc (bottom
x-axis label) or equivalently nðηÞ (top x-axis label, characterizing
the width of the flattest part of the constitutive curve), for a shear
rate _̄γ ¼ 4.7 near its flattest part; and (right) in the plane of surface
tension and imposed shear rate ðΓ; _̄γÞ for a fixed η ¼ 0.006
(n ¼ 1.06), which gives a rather flat constitutive curve. The red
lines show the onset of the edge fracture instability, and black
lines show the contour Δc

_γ ¼ 0.15.

0 5 10 15
z

10
-6

10
-4

10
-2

10
0

Δγ
.

0 5 10 15
z

Λ = 12
Λ = 16
Λ = 20
Λ = 24
Λ = 28
Λ = 32

FIG. 4. Normalized degree of banding Δ_γ as a function of
distance z in from the sample edge, from z ¼ 0 up to the cell
midpoint, for several different sample lengths Λ. (Left) For a fluid
with a relatively flat constitutive curve, η ¼ 0.006 (n ¼ 1.06),
and (right) for a fluid with a moderately sloping constitutive
curve, η ¼ 0.02 (n ¼ 0.45). In each case, _̄γ ¼ 4.7 and Γ ¼ 0.2.
The horizontal dashed line shows the threshold Δc

_γ ¼ 0.15 for
visually apparent shear banding.
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results for the case of the relatively flat constitutive curve
(b) in Fig. 2 (left), and the right panel shows results for the
moderately sloping constitutive curve (a) in Fig. 2. (In each
case, the imposed shear rate is near the flattest part of the
constitutive curve.) As can be seen, for the moderately
sloping constitutive curve (Fig. 4, right), the degree of
banding falls below the threshold for being visually
apparent by a distance of about 2–3 gap widths in from
the sample edge. In contrast, for the flatter constitutive
curve (Fig. 4, left), the degree of banding stays above the
threshold for being visually apparent even at the cell
centerpoint z ¼ 16.0Ly for the longest sample length
Λ ¼ 32.0Ly. This is towards the limit of experimental
sample aspect ratios, and indeed, it is larger than the depth
from the fluid-air surface at which the velocimetry is
usually performed experimentally.
To summarize, in shear thinning polymeric fluids, we

have shown that only modest disturbances of the sample
edge (which are the precursors of true edge fracture but
might well in themselves go unnoticed experimentally) can
lead to strong shear banding that invades far into the fluid
bulk, even for the largest sample sizes that are typically
studied experimentally. Importantly, this is true even for an
underlying constitutive curve that is monotonically increas-
ing, precluding true bulk banding in the absence of edge
effects. This work therefore shows that strong quasibulk
shear banding can be precipitated by even only modest
precursors of the surface transition of edge fracture.
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