
 

First-Principles Study of Charge Diffusion between Proximate Solid-State Qubits
and Its Implications on Sensor Applications

Jyh-Pin Chou and Zoltán Bodrog
Institute for Solid State Physics and Optics, Wigner Research Centre for Physics,

Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary

Adam Gali*

Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences,
P.O. Box 49, H-1525 Budapest, Hungary

and Department of Atomic Physics, Budapest University of Technology and Economics,
Budafoki út 8, H-1111 Budapest, Hungary

(Received 30 August 2017; published 27 March 2018)

Solid-state qubits from paramagnetic point defects in solids are promising platforms to realize quantum
networks and novel nanoscale sensors. Recent advances in materials engineering make it possible to create
proximate qubits in solids that might interact with each other, leading to electron spin or charge fluctuation.
Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from
first principles and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are
in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and
negatively charged NV defect pairs can form a NV-NV molecule. A tunneling-mediated model for the
source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting
qubits in diamond.
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Quantum bits or qubits are the building blocks of future
quantum computers and nanoscale sensor devices. Special
point defects with nonzero electron spin states may realize
qubits in solids [1–3] that can be well engineered by
controlled implantation or irradiation techniques [4–8].
Proximate qubits with electron-spin-electron-spin–dipole-
dipole interaction may establish a quantum network in
solids [9]. The negatively charged nitrogen-vacancy defect
[NVð−Þ] (see Refs. [10,11]) represents such a solid-state
qubit in diamond [1,12,13]. The NV color center consists
of a nitrogen atom substituting a carbon atom next to a
vacancy [see Fig. 1(a)]. The defect forms a nondegenerate
a1 level and a double degenerate e level in the gap that are
occupied by four electrons in the negative charge state [see
Fig. 1(b)], constituting an S ¼ 1 ground state [14,15]. The
initialization and readout of this qubit can be done optically
[see Fig. 1(c)], where the luminescence intensity of the
illuminated NV center depends on the electron spin state,
and subsequent optical cycles will polarize the electron spin
to the ms ¼ 0 state. We note that the defect can also be
found in its neutral charge state [NV(0)] [16], in which the
e level is only occupied by a single electron. NV(0) coexists
with NVð−Þ in diamond when the quasi-Fermi level lies
around the midgap [17,18].
Isolated NVð−Þ has a long spin coherence time of

≈1.8 ms [19] in high-quality 12C enriched diamond sam-
ples that persists at room temperature. This makes this qubit

very attractive for biological or biomolecule sensing
applications [20–23], where the NV centers are engineered
relatively close to the surface of diamond, in order to sense
the objects on the surface. A persistent problem of near-
surface NV centers is the significantly reduced coherence
time compared to that of deeply buried NV centers in
diamond. The origin of the noise causing this effect is still
under intense research [24–31].

FIG. 1. Nitrogen-vacancy (NV) defect in diamond. (a) Opti-
mized geometry in the core of NV center. (b) Single particle
defect levels in the fundamental band gap in the ground state of
NV defects. Empty (shaded) arrows depict holes (electrons).
(c) Many-body levels at room temperature and decay from the
optically active 3E excited state to the 3A2 ground state of NVð−Þ.
Radiative (nonradiative) transitions are depicted by straight
(dashed-curved) arrows. Bright (dark) lamp illustrates the most
(less) intense fluorescence of NV center that is the base of optical
spin polarization and readout of the ms electron spin state.

PHYSICAL REVIEW LETTERS 120, 136401 (2018)

0031-9007=18=120(13)=136401(5) 136401-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.136401&domain=pdf&date_stamp=2018-03-27
https://doi.org/10.1103/PhysRevLett.120.136401
https://doi.org/10.1103/PhysRevLett.120.136401
https://doi.org/10.1103/PhysRevLett.120.136401
https://doi.org/10.1103/PhysRevLett.120.136401


Recently, another configuration of NVð−Þ centers has
been found with reduced coherence time. In these experi-
ments [7,8], NVð−Þ centers have been engineered with an
extremely high concentration of about 45 ppm, that resulted
in a strong long-range magnetic dipolar interaction of
ð2πÞ420 kHz between them. However, the observed elec-
tron spin coherence time was significantly reduced to about
67 μs [7]. A charge fluctuation model was developed
between neighboring NVð−Þ and NV(0) defects with about
an average distance of 5 nm that led to the decoherence of
the NVð−Þ spin state. The charge fluctuation characteristic
time was estimated to be τ ¼ 10 ns, which corresponded
well to the estimated spin depolarization frequency of
ð2πÞ3.3 MHz. The experimental facts implied tunneling-
mediated charge diffusion [7]. However, the underlying
physical mechanism of charge fluctuations was not under-
stood. Deep knowledge about the underlying physical
mechanism is of high importance for both quantum network
and nanosensor applications of the NV center.
In this Letter, we propose a microscopic model for the

source of decoherence in NV qubits, which is of high
importance in quantum network as well as nanosensor
applications of NV center in diamond. This model is based
on the quantum mechanical tunneling or hopping of the
electron of NVð−Þ and a proximate acceptor defect in
diamond. In order to model this charge dynamic, we
consider a system composed of NVð−Þ and NV(0) defects
where NV(0) is an acceptor and the electron of NVð−Þ can
hop between the two defects. We developed an ab initio
method to calculate the corresponding hopping time τ for
various configurations of NV defect pairs in diamond that
resulted in an average τ ≈ 10 ns at a distance of ≈4.4 nm.
We estimate that a distance of ≈9 nm between the NV
sensor and the acceptor defect is required to maintain the
coherence time (≈1 ms) of the isolated NV qubit in 12C
enriched diamond. Our results are in good agreement with
previously deduced experimental data for high concen-
tration of NV centers [7] and provide an explanation for one
of the decoherence mechanisms of near-surface NV qubits.
As an outcome of our study, we claim that a proximate and
isolated ½NV-NV�ð−Þ pair can be used to study a quantum
mechanical bond by the optically detected magnetic res-
onance (ODMR) technique.
The microscopic theory of tunneling of an electron

of NVð−Þ to a nearby NV(0) is presented below. This
tunneling electron of NVð−Þ is originally localized on the e
orbital (ψA) at site A. NV(0) acts as an acceptor at site B in
which the e orbital (ψB) of NV(0) will be occupied by this
electron. The hopping rate between the two sites (ΩAB) may
be calculated as

ΩABðrÞ ≈
1

ℏ
hψAjĤABjψBir ≈

E0

ℏ
hψAjψBir; ð1Þ

where Ĥ is an effective single particle Hamiltonian acting
on the electron that binds the two sites, r is the distance

between the two defects, and ℏ is the Planck constant.
We note that this electron will tunnel back and forth
between these defects when isolated; i.e., a quantum
mechanical bond is established with a nonvanishing prob-
ability of the electron wave function between the two
defects. As a consequence, Mulliken’s theory of quantum
mechanical bonds [32] can be directly applied in the
evaluation of the integral, which yields an overlap integral
of the real wave functions at A and B sites (hψAjψBi)
multiplied by E0, where the latter is related to an average of
the on-site energies of the two sites. The ψfA;Bg wave
functions have a special shape and oscillatory decay from
the A and B sites of the defects (see Fig. 2); thus, the
accurate evaluation of the overlap integral requires ab initio
calculations. We will show below that the value of E0 can
also be deduced from first-principles calculations.
Our first-principles approach is based on plane-wave

supercell Kohn-Sham density functional theory (DFT)
[33,34] calculations as implemented in the VASP code [35]
within the projector augmented wavemethod [36]. Tomodel
the NV defect, we applied an extremely large supercell with
thousands of atoms that will be discussed below. TheΓ-point
sampling of the Brillouin zone results in converged electron
density and real Kohn-Sham wave functions in these large

FIG. 2. Defect wave functions in 10 × 10 × 5 hexagonal super-
cell of diamond with 25.1 × 25.1 × 30.7 Å3 lattice constants.
(a) Top and side view of the ex and ey defect wave functions of
NVð−Þ. For the sake of clarity, the atoms are not shown in
diamond. The real space wave functions are visualized: the green
and yellow lobes represent the isosurface of the wave function at
values of þ1.89 × 10−6 and −1.89 × 10−6 1=Å3, respectively.
(b) The wave function amplitude profile along the dashed line in
(a). The wave function completely decays at the edge of the
supercell boundaries. The origin is set to the middle of the dashed
line.
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supercells. The plane-wave cutoff was set to 370 eV [18].We
applied a Perdew-Burke-Ernzerhof (PBE) DFT exchange-
correlation functional [37] that provides fairly accurate
wave functions in the ground state of NV defects [38,39].
We projected the values of the Kohn-Sham defect wave
functions to the three-dimensional equidistant gridwithin the
applied supercell with ≈0.31 Å distances between the grid
points. In the optimized geometry of the NV defects,
quantum mechanical forces acting on the atoms were less
than 0.01 eV=Å. In the calculation of E0 we also used
512-atom 4 × 4 × 4 cubic supercell and band structure
calculations in the Brillouin zone.
In the calculation of the overlap integral we assume an

interaction between an isolated NV defect pair. The wave
functions of NVð−Þ and NV(0) are calculated in separate
diamond clusters. Each diamond cluster is constructed
from a 3000-atom hexagonal diamond supercell, which
is commensurate with the C3v symmetry of the defect and
sufficiently large to accommodate the extent of the defect
wave functions (see Fig. 2). The line profiles in Fig. 2(b)
show that the wave functions decay relatively fast, and the
electron probability jψ j2 is about 0.1% at a distance of 1 nm
away from the center of the defect. We note that the same
conclusion was achieved for the ex and ey defect states of
NV(0). Therefore, the calculated defect wave functions in
this supercell and the corresponding 3D grid can be taken
as a cluster of an isolated defect (see more details in the
Supplemental Material [40]). In this construction, we could
reach 5.2 nm maximum distance between the two NV
defects in the (111) plane. By taking these diamond clusters
of NVð−Þ and NV(0), the corresponding overlap integral
can be calculated at various distances and all the possible
NV-NV orientations within the range of the given maxi-
mum distance.
However, there is no strict formula for obtaining the

value of E0. We work around this problem by substituting
the system of the isolated ½NV-NV�ð−Þ pair by the system
of periodic array of NVð−1=2Þ defects, where (−1=2)
means half charge (half electron). The idea is that the
periodic array of NVð−1=2Þ defects constitutes the same
type of covalent bonds as those in an isolated ½NV-NV�ð−Þ
molecule, in which the electron is equally shared between
the two sites because of the same potential induced by the
NV defects. These covalent bonds in the periodic array
model will naturally form a defect impurity band in the
diamond band gap. A tight binding theory can be applied to
the impurity band of this system, i.e., the periodic array of
NVð−1=2Þ embedded into diamond crystal, in which the
hopping integral of the tight binding theory [see Eqs. (6) and
(7) in Ref. [40]] is basically identical with hψAjĤABjψBi in
Eq. (1). By applying the tight binding retrofit to the
dispersion relation of the impurity band, the hopping integral
can be read out [see Eq. (8) in Ref. [40]], and E0 can be
derived by dividing the values of these integrals with the
overlap of the corresponding wave functions [see Eq. (1)].

To this end, we choose the cubic array of NVð−1=2Þ in a
512-atom cubic supercell of diamond, which yields a small
dispersion for the half filled ey level (see Fig. 3). This
indicates that the direct interaction between the periodic
images is very small but still sufficiently large to be above
the numerical uncertainty of ≈1 meV. The tight binding
retrofit to the ey level is almost perfect with a standard
deviation of about 1%. From these calculations we obtain
the values of the hopping integrals along the corresponding
directions. At these orientations and distances between the
neighbor NVð−Þ and NV(0), we calculated the overlap
integrals of the ey wave functions in the cluster model as
explained previously. Finally, the ratio of the hopping
integrals and overlap integrals results in E0 ¼ 0.058 eV
(see also Ref. [40]). This E0 is used in the calculation of
the hopping rates between isolated NV defect pairs as a
next step.
We computed the corresponding overlap integral at

various distances (up to 5.2 nm) and all the possible
NV-NV orientations when accessible in the combination
of the two 3000-atom hexagonal clusters. It is apparent
from Fig. 2(a) that the overlap of wave functions should be
larger on the NV-NVorientation of the (111) plane than that
in other NV-NV orientations. Consequently, the individual
hopping rates will also be larger for the corresponding
NV-NVorientations. The schematic illustration of NVð−Þ-
NVð0Þ configurations with a distance r are shown in
Fig. 4(a), and all the corresponding hopping rates are
calculated and summarized in Fig. 4(b). By fitting the

FIG. 3. The band structure of NV defect in a 4 × 4 × 4 cubic
cell along Γð0; 0; 0Þ point to Xð1=2; 0; 0Þ point with half extra
charge. The valence band maximum is aligned to zero. The
calculations were carried by a PBE DFT functional that provides
an inaccurate band gap, but the Kohn-Sham wave functions
should be accurate. Because of the half charge the symmetry is
tilted a bit to C1h symmetry; thus, ex and ey levels slightly split,
but it is very close to the C3v symmetry. The spin polarized PBE
DFT calculations result in separate spin-up (black straight curve)
and spin-down (red dotted curve) bands and levels. The valence
and conduction band regions are green regions. The orange and
white arrows represent the occupied and unoccupied defect states,
respectively. The six panels show the dispersion of each in-gap
defect level in the region Γ-X. The hopping integral was inferred
from the dispersion of the half electron (1=2e) filled ey level.
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hopping rate to an exponential regression in the range from
1.5 to 5.2 nm, we found that the hopping rate is around
ð2πÞ13 MHz on average at 4.4 nm distance between NV
defects that corresponds to ≈10 ns diffusion time. This is in
the order of magnitude of the optical lifetime for the
negatively charged NV defect in diamond [41], and can
explain the charge fluctuation in diamond with high NV
concentration. Our calculations are in very good agreement
with previous studies on such diamond samples [7] that
verify the tunneling-mediated charge diffusion model.
Our finding has implications in the field of quantum

sensors. Our model clearly demonstrates that tunneling of
the NVð−Þ’s electron to a proximate defect that can accept
this electron is feasible. We emphasize that this effect occurs
in the ground state, without any illumination. In sensor
application, the single NV qubit or NV qubit ensembles
should reside near the surface of diamond for sensing the
external fields. However, unwanted defects may appear on
the diamond surface that can deteriorate the operation of
each individual or singleNVqubit. In particular, defects with
acceptor levels at the surfacemay interact with the electron of

NV center. The NV(0) defect can serve as a model defect for
acceptor-type defects at the surface that have similar exten-
sion of the acceptor wave functions to that of NV(0). It was
indeed shown [43] that such defects can exist in oxygenated
diamond surfaces that have been the subject of coherence
studies on near-surface NV qubits [24–31]. The derived
hopping rate between NVð−Þ and a nearby NV(0) reads
as ð2πÞ2.30 × 1014 exp ð−3.8rÞ Hz [blue line in Fig. 4(b)],
where distance r is given in nanometer unit. Finally, we
estimate that the rough critical distance between the single
NV qubit sensor and the surface acceptor defect is ≈9 nm,
in order to persist themillisecond coherence time of the qubit
in 12C enriched diamonds. In practice, the NV sensor might
be located somewhat closer than 9 nm to the diamond surface
without reducing its coherence time because these acceptor
defects do not dominantly reside exactly above theNVcenter
on the surface. Here we established a tunneling-mediated
model for the source of decoherence of the near-surface
NV qubit.
We note that the electron will tunnel back and forth

between proximate NV defects when isolated; i.e., a
½NV-NV�ð−Þ molecule is formed. Consequently, an iso-
lated NVð−Þ-NVð0Þ pair defect can be applied to directly
study quantum mechanical bonds by the ODMR technique,
where the tunneling rate of the electron in this system is
several orders of magnitude slower (10 ns) than that of the
electron in a usual molecule (femtosecond or attosecond
region). By employing recent superresolution techniques
[44], the tunneling of the electron between the two sites can
be monitored by observation of the ODMR signal of
NVð−Þ at both sites as a function of time. The requirement
of this measurement is that the illumination applied in the
ODMR measurements will not ionize NVð−Þ or NV(0).
In conclusion,we carried outab initio calculations to study

charge fluctuation between solid-state qubits, in particular,
the NV defects in diamond. We found that the electron can
tunnel between proximate NVð−Þ and NV(0) defects. We
provided detailed quantitative analysis on the probability of
tunneling or hopping as a function of orientation anddistance
between the NV defects. Our findings are in quantitative
agreement with data from previous experimental studies.
We identified the critical distance between a near-surfaceNV
sensor and the surface defects, for maintaining the favorable
coherence properties of the qubit. Our conclusions are
important in future quantum network and sensing studies
of this solid-state qubit. Our ab initio methodology for
studying charge and spin fluctuation of proximate qubits is a
template for other solid-state qubit systems.

We acknowledge the funding support from the EU
Commission FP7 Grant No. 611143 (DIADEMS) and
the National Research Development and Innovation
Office of Hungary within the Quantum Technology
National Excellence Program (Project No. 2017-1.2.1-
NKP-2017-00001).

FIG. 4. (a) Schematic illustration of two NV centers with the
separation of r. The wave function of NV is converted into a
three-dimensional equidistant grid. The maximum of separation r
in the 3000-atom hexagonal cell is 5.2 nm in the (111) plane.
(b) The calculated hopping rate of electrons of all possible
configurations at a given distance r. The average hopping rate
values are shown as a blue line. We note that all the possible
configurations could be taken into account for r ≤ 4.5 nm. For
larger r we have only a subset of configurations because of the
constraint of the size and shape of the hexagonal cluster.
The value of the hopping rate can be extrapolated at larger r
by assuming an overall exponential decay. The dashed horizontal
line shows a critical rate at ð2πÞ13.2 MHz, which is the deduced
rate of the radiative decay (see Ref. [42]).
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