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The de Gennes narrowing phenomenon is frequently observed by neutron or x-ray scattering
measurements of the dynamics of complex systems, such as liquids, proteins, colloids, and polymers.
The characteristic slowing down of dynamics in the vicinity of the maximum of the total scattering intensity
is commonly attributed to enhanced cooperativity. In this Letter, we present an alternative view on its origin
through the examination of the time-dependent pair correlation function, the van Hove correlation function,
for a model liquid in two, three, and four dimensions. We find that the relaxation time increases
monotonically with distance and the dependence on distance varies with dimension. We propose a heuristic
explanation of this dependence based on a simple geometrical model. This finding sheds new light on the
interpretation of the de Gennes narrowing phenomenon and the α-relaxation time.
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The dynamics of complex soft matter, including poly-
mers [1–4], biological matter [5–7], colloids [8,9], and
various liquids [10,11], is frequently measured by scatter-
ing experiments, such as quasielastic neutron scattering,
x-ray photon correlation spectroscopy, and neutron spin
echo. Often one observes that the dynamics characteristi-
cally slows down in the range ofQ, the momentum transfer,
where the total scattering intensity, SðQÞ, reaches maxi-
mum. This phenomenon is widely known as the de Gennes
narrowing [12], and is usually interpreted as the sign of
enhanced cooperative dynamics. Despite the ubiquity of
this phenomenon, details of the dynamics are rarely
discussed, particularly in real space. In this Letter we
suggest that the de Gennes narrowing could originate from
a simple geometrical reason, and its observation does not
necessarily imply the presence of collective dynamics.
In 1954, van Hove showed that the double differential

cross section measured by inelastic x-ray or neutron
scattering experiments are the Fourier transform of density
correlations in space and time, by generalizing the concept
of pair distribution functions (PDF) [13]. The time-
displaced PDF, Gðr; tÞ, where r is distance and t is time,
is now known as the van Hove correlation function. It can
be partitioned into the self- and distinct parts, defined as
Gsðr; tÞ and Gdðr; tÞ. The self-part tracks the positional
correlation of the same particle at time t0 and t0 þ t and
describes migration of a single particle. It is usually
Gaussian for simple liquids [14,15], whereas it is known
to deviate considerably from the Gaussian form in deeply
supercooled liquid [16–19]. On the other hand, the distinct
part records the positional correlation between different
particles. At t ¼ 0 Gdðr; 0Þ is the snapshot PDF, and as t

approaches infinity the distinct part converges asymptoti-
cally to unity. However, its relaxation process within these
two temporal limits for general liquids is not understood
well. Whereas for a long time the van Hove function has
been accessible only by simulation [16–20], it is now
possible to determine it experimentally with high accuracy
through the inelastic scattering measurements [21]. This
provides additional incentive to further our understanding
on the nature of the van Hove correlation function.
We study model liquid iron as a representative of simple

liquid using molecular dynamics simulations. The focus is
placed on three-dimensional (3D) simulations whereas
complementary two-dimensional (2D) and four-dimen-
sional (4D) simulations are also carried out to support
our argument on the mechanism. We employ the NVT
ensemble, and the details regarding the simulation setup
can be found in Supplemental Material [22]. The melting
point in three dimensions is around 2400 K and the
viscosity crossover temperature denoted TA, below which
super-Arrhenius behavior occurs, is around 2000 K, con-
sistent with previous studies [27]. The distinct part of the
van Hove correlation function is computed using Eq. (1) in
three dimensions, where r⃗iðt0Þ represents the position of
particle i at time t0 and h…i means thermal averaging over
the choices of t0,

Gdðr; tÞ ¼
V

4πr2N2

�XN
i≠j

δðr − jr⃗iðt0Þ − r⃗jðt0 þ tÞjÞ
�
: ð1Þ

A typical example obtained from 3D simulation at
T ¼ 2500 K is displayed in Fig. 1. In panel (a), the result,
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Gdðr; tÞ − 1, is shown in a series of constant time slices. We
see that at t ¼ 0 the oscillations in the PDF extend to long
range, and are discernible even beyond 15 Å. As time
progresses the locations of peaks and valleys remain nearly
the same, whereas their amplitudes gradually decay to 0.
However, the decay rate appears to vary with distance r. For
instance, the decay of the first peak is much faster than that
of the second peak although the relaxation behavior
of long-range peaks and valleys is unclear from this
illustration because of their small amplitudes. We normal-
ize Gdðr; tÞ − 1 through Gdðr; 0Þ − 1 and show constant r
slices in panel (b). This plot demonstrates one of our major
findings in this Letter: the relaxation time of Gdðr; tÞ − 1
has monotonic r dependence. With larger distance, the
relaxation becomes more sluggish. We find that the
normalized Gdðr; tÞ − 1 can be satisfactorily described
by the functional form of exp½−ðt=τÞβ�, where τ is
interpreted as the relaxation time and β quantifies con-
traction or stretching of the exponential. We employ this
functional form to fit the normalized correlation function at
selected distances and the fitting curves are shown in panel
(b) as short dashed lines. One sees that the fitting quality is
quite good, except for the first peak and at the short time
where a ballistic process is dominant. The first peak
overshoots the 0 line at t ≈ 1500 fs and remains negative
afterward within the shown temporal range, although it
should also converge to 0 at a long-time limit. Because of
this overshooting, the relaxation of the first peak cannot be
described by the exponential function in contrast to the
peaks and valleys at far field. Apparently, the dynamics of
the atoms in the first nearest neighbor shell is too strongly
correlated with the central reference particle to be described
by a simple exponential function. The seemingly deterio-
rating fitting quality at long distance and long time is due to
the statistical error in calculating the van Hove correlation
function. Nonetheless, all the r-squared parameters from
fitting are better than 0.995 (see Sec. VII in Supplemental
Material [22] for more details). It is important to note that

the extracted relaxation time is model independent. One
can alternatively determine the relaxation time by empiri-
cally monitoring the time when the normalized van Hove
function decays to 1=e and both methods yield identical
value within statistical uncertainty.
The determined r-dependent relaxation time τðrÞ at three

representative temperatures is shown in Fig. 2. It is clear
that τðrÞ increases linearly with distance, and the slope is
temperature dependent. Such linear dependence was
observed also for our simulations with the Lennard-
Jones and Yukawa potentials, suggesting that this is a
general behavior of high-temperature liquids. The value of
β was also found to increase linearly with r, and is weakly
dependent on temperature, as shown in Supplemental
Material [22]. It is difficult to provide a full and rigorous
explanation of this linearly increasing relaxation time, but
we propose the following heuristic argument. By the
definition of gðrÞ in three dimensions, or equivalently
Gdðr; 0Þ, the number of particles located within the range

(a) (b)

FIG. 1. The distinct part of the van Hove correlation function, Gdðr; tÞ − 1, for 3D model liquid iron at 2500 K: (a) constant t plot and
(b) constant r plot. In (b), the results are normalized using respective t ¼ 0 values and the normalized correlation functions are fit with
exp½−ðt=τÞβ� shown as short dashed lines.

FIG. 2. The relaxation time determined from Gdðr; tÞ in 3D
liquid iron at a series of distances at temperatures of 2000, 2500,
and 3000 K. The short-dashed straight lines serve as guides to
the eyes.

PHYSICAL REVIEW LETTERS 120, 135502 (2018)

135502-2



of r to rþ dr from a reference particle is on average
NðrÞ ¼ 4πρ0gðrÞr2dr, where ρ0 is the number density of
atoms. We note that the PDF is a spherically averaged
quantity, and at large distance the PDF describes the
correlation between one atom at the center and an aggregate
of atoms at the distance r, rather than the direct atom-atom
correlation. Based on this understanding, τðrÞ then should
reflect the relaxation of the aggregate of atoms and
arguably scale with its fluctuations, ΔNðrÞ. By the central
limit theorem (see Supplemental Material [22] for more
details) the fluctuation in the number of particles within the
same radial shell is proportional to the square root of NðrÞ;
hence, ΔNðrÞ ∝ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρ0gðrÞ

p
. At far field where gðrÞ ≈ 1,

ΔNðrÞ is consequently proportional to r, suggesting the
scaling behavior of τðrÞ ∝ r in three dimensions.
According to this argument the observed linearly increasing
relaxation time is directly attributable to a geometrical
factor, not the collectivity of dynamics. This argument can
be readily tested through dimensionality dependence of the
geometrical factor. In general, ΔNðrÞ in D-dimensional
liquid should be characterized by the ðD − 1Þ=2 power
dependence on r at far field. Thus τðrÞ is expected to show
r0.5 and r1.5 dependences in two dimensions and four
dimensions, respectively. To verify such prediction, the
same analysis was applied also to the complementary 2D
and 4D simulations at 2500 and 3500 K, respectively. We
note that because the crossover temperature TA increases
with dimensionality, a higher temperature is chosen here for
four dimensions.
We observe that τðrÞ in two dimensions and four

dimensions also increases with distance and indeed shows
different curvatures compared to three dimensions.
Following the previous argument we fit the relaxation time
with the power law, τðrÞ ¼ τrðr=r1Þχ þ τ0, where r1 is the
position of the first peak of the PDF and τr, τ0, and χ are
fitting parameters, at distances beyond the first peak. The
fitting results are summarized in Table I. The determined
powers χ are found to be close to the expected values. We
argue that the discrepancy between the fitted parameter and
expected value of χ in two dimensions is due to the presence
of robust hexatic fluctuations [28], which is not taken into
consideration in the geometrical model. The uniqueness of
two dimensions can also find support from the negligible
magnitude of τ0 in contrast to three dimensions and four
dimensions. Furthermore, it is conceivable that the power χ
in four dimensions could be underestimated due to a limited

r range (see Supplemental Material [22] for the simulation
setup). In order to assess the fitting quality and highlight the
χ parameter, we plot logf½τðrÞ − τ0�=τrg versus logðr=r1Þ in
Fig. 3, where the slope is equal to χ. Therefore, we suggest
that the present results qualitatively support the previous
argument: The relaxation time of the distinct van Hove
correlation function is characterized by the power law
dependence on distance at far field with the power
χ ¼ ðD − 1Þ=2.
Next we investigate the nature of τr and τ0 from the

found power law dependence of τðrÞ by examining their
temperature dependences in three dimensions, assuming
χ ¼ 1. The results are shown in Fig. 4. In (a), one sees that
both τr and τ0 show the Arrhenius behavior at high
temperatures and become super-Arrhenius below the
viscosity crossover temperature, TA ≈ 2000 K, similar to
the well-known behavior of the Maxwell relaxation time τM
[27]. To understand the relationship among τr, τ0, and τM,
we plot their ratios as a function of temperatures in (b).
The Maxwell relaxation time is calculated from the shear
stress correlation function using the Kubo equations as in
Refs. [27,29]. It is first noticed that the ratio τr=τ0 is
constant within the statistical uncertainty across the studied
temperature range. This ratio is found be 0.55 and is
dimensionality dependent; the τr=τ0 ratio for four dimen-
sions is around 0.18. Secondly, we see that both the τr=τM
ratio and the τ0=τM ratio are constant (1.55 and 2.83,
respectively) at high temperatures and increase below TA.
These observations suggest that τr and τ0 have the same
origin, both reflecting the relaxation of density fluctuation.
At high temperatures, there is only one relaxational

FIG. 3. The r-dependent relaxation time τðrÞ determined from
the normalized distinct part of the van Hove correlation function
of model liquid iron in two dimensions at 2500 K (red triangle),
three dimensions at 2500 K (black circle), and four dimensions at
3500 K (blue square) beyond the first peak position. The data
points are shown in the form of logf½τðrÞ − τ0�=τrg versus
logðr=r1Þ to highlight χ from the expected power law depend-
ence, where τ0 and τr are taken from Table I. The short dashed
lines serve as guides to the eye.

TABLE I. Parameters determined from power law fitting to
τðrÞ. The errors reflect 95% confidence bounds.

χ τr (fs) τ0 (fs)

2D 0.66� 0.14 179.10� 80.60 8.84� 111.56
3D 1.04� 0.16 122.30� 51.70 252.80� 94.90
4D 1.45� 0.20 31.18� 11.95 171.20� 23.20
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timescale (Maxwell relaxation time) because phonons are
localized [27]. Therefore, τr and τ0 are proportional to τM.
However, below TA density fluctuation and stress fluc-
tuation become decoupled due to the fact that phonons can
propagate longer than one atomic distance [27]. As such,
the proportionalities break down.
We now discuss the slowdown of dynamics at a wave

vectorQ corresponding to the maximum in SðQÞ, known as
the de Gennes narrowing phenomenon, from the perspec-
tive of real space dynamics. In Fig. 5(a), we show the
relaxation time τðQÞ determined from the collective part of
the intermediate scattering function, FcðQ; tÞ, which is the
Fourier transformation of the total van Hove correlation
function, at T ¼ 2500 K in three dimensions. Here τðQÞ is
defined as the time when FcðQ; tÞ=FcðQ; 0Þ decays to 1=e.
It shows clear slowing down in the vicinity of the first peak
of the structure factor SðQÞ shown in Fig. 5(b), as
suggested by de Gennes [12]. It has long been speculated
that this characteristic slowing down is due to the coop-
erativity of dynamics at the corresponding length scale.

However, our results provide an alternative interpretation.
Because T ¼ 2500 K is higher than TA, there should be no
collective dynamics at this temperature. But the r depend-
ence of the relaxation time, τðrÞ, shown in Fig. 2, provides
the explanation. Because gðrÞ and SðQÞ are connected by
the Fourier transformation, the first peak of SðQÞ at QMax
largely generates the long-range oscillations in gðrÞ,
whereas the first peak in gðrÞ creates the high-Q part of
SðQÞ [30]. Therefore FcðQMax; tÞ reflects the behaviors of
the far fields of Gdðr; tÞ, which are slower. This explains
why τðQMaxÞ (¼417 fs) is much longer than the relaxation
time of the first peak of the distinct part of the van Hove
correlation function, 200 fs. On the other hand, at other
wave vectors the structure factor has both constructive and
destructive interferences from the peaks and valleys of gðrÞ
(see Supplemental Material [22] for further discussion).
Consequently, the relaxation of SðQÞ away from the
first peak is dominated by the self-part of the van Hove
function. Therefore, the corresponding relaxation time is
much shorter than τðQMaxÞ as shown in Fig. 5. In this

(a) (b)

FIG. 4. Temperature dependence of τr and τ0 from linear fitting to the r-dependent relaxation time of the normalized distinct part of the
van Hove correlation function of model liquid iron in three dimensions. The results are shown in the Arrhenius plot in (a) and ratios in
(b). τM is Maxwell relaxation time. Short dashed lines serve as guides to the eyes.

(a) (b)

FIG. 5. Illustration of the de Gennes narrowing phenomenon: The wave-vector dependent relaxation time τðQÞ determined from the
collective part of the intermediate scattering function at 2500 K in 3D liquid iron shown in (a) clearly demonstrates a characteristic
slowing down in the vicinity of the peak position of SðQÞ shown in (b).
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interpretation of the de Gennes narrowing, the reason for
the characteristic slowing down is due to the linearly
increasing relaxation time in the distinct part of the van
Hove correlation function in three dimensions for a
geometrical reason, rather than the enhanced cooperativity
in collective dynamics. This analysis shows that the
observation of the de Gennes slowing down does not
necessarily mean the presence of collective relaxation
modes. In many cases it merely reflects the geometrical
factor as explained here.
This argument also raises a serious question regarding

the validity of defining the α-relaxation time, τα, as
τðQMaxÞ, as is customarily done. The reasoning is that
τðQMaxÞ represents the relaxation time of the far-field
oscillations in gðrÞ, and thus the structural relaxation time.
However, as discussed above, the longevity of the oscil-
lations in gðrÞ is merely the result of a geometrical factor,
and the only independent parameter in simple liquids above
TA is just τM [27]. The popularity of τðQMaxÞ may well
originate from the fact that in the scattering experiment it is
easier to determine the relaxation time at the peak of SðQÞ.
Then it is just an exemplary case of looking for a key under
the lamp post. Thus, in our view the so-called α-relaxation
time determined as τðQMaxÞ is not a physically meaningful
parameter. In general, we find it is dangerous to discuss the
relaxation time of the system from the intermediate
scattering function, FðQ; tÞ. Our view is that only when
the full van Hove function is determined can the analysis of
the relaxation time in liquid become physically meaningful.
In conclusion, we showed that the distinct part of the van

Hove correlation function encodes rich information regard-
ing the dynamics of simple liquids. There are two major
findings in this Letter: First, the relaxation time of the
distinct van Hove correlation function increases monoton-
ically with distance; second, this relaxation time is found to
follow a power law dependence on r with power χ close to
the prediction ðD − 1Þ=2 at far field. We attribute this
power law dependence to a geometrical reason. Based on
this reasoning, we argue that the de Gennes narrowing
phenomenon does not necessarily reflect the presence of
collective dynamics but could simply be due to the linearly
growing τðrÞ in three dimensions for a geometrical reason.
There are still many characteristics not understood from the
distinct part of the van Hove correlation function, such as
the relaxation process of the first peak of PDF and the
physical meanings of τr and τ0 from the power law
dependence, which are left to future studies using binary
mixture that allows exploration on the deeply supercooled
regime. With the development of higher brilliance radiation
sources, soon the present results can be tested through
scattering experiments.
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