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Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount
achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability
and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-
drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ∼0.7% laser
frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments.
This allows for higher ablation pressures in future implosion designs by using higher laser intensities.
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In direct-drive inertial confinement fusion (ICF), a
cryogenic capsule of deuterium-tritium fuel with a thin
outer ablator material is imploded by direct laser illumi-
nation [1,2]. An efficient implosion maximizes the amount
of laser energy that is converted into kinetic energy of the
imploding shell, while minimizing the premature heating of
the cold fuel by hot-electron preheat [3]. Preheat reduces
the implosion efficiency by decreasing the compressibility
of the capsule. Radiation-hydrodynamic simulations sug-
gest that converting as little as 0.1% of the incident laser
energy into preheat can significantly degrade implosion
performance [4].
The dominant source of hot electrons in direct-drive ICF

experiments on the OMEGA laser [5] is the two-plasmon
decay (TPD) instability [6]. Two-plasmon decay occurs
when an incident light wave decays into two electron plasma
waves (EPWs) at near-quarter-critical densities [7–10].
When the driven EPWs become large in amplitude, the
instability undergoes nonlinear saturation resulting in a broad
spectrum of EPWs [11,12] that can stochastically accelerate
electrons to energies>100 keV [13]. The fraction of incident
laser energy converted into hot electrons (fhot) has been
observed to exceed 1% at ignition-relevant laser intensities
[14], and experiments indicate that∼25% of the hot-electron
energy is coupled to the cold fuel [15]. This suggests that
hot-electron preheat is near the tolerable level in the highest-
intensity OMEGA experiments.
TPD-driven preheat currently limits the peak laser inten-

sity in direct-drive ICF implosions to ∼1015 W=cm2. A
number of studies have shown that alternative ablator
materials can be used to mitigate TPD [16,17], but this
approach allows for only modest increases in laser intensity
and precludes the optimization of the ablator for hydro-
dynamic efficiency.
The main reason that TPD is a limiting instability for

direct-drive ICF is that many overlapping laser beams can
drive the instability cooperatively [18]. This results in hot

electrons being observed even when the single-beam laser
intensities are well below the instability threshold. The
requirement of spatial coherence of the cooperating beams
restricts them to lie on a cone in the homogeneous theory
[19,20], but the short spatial extent of the TPD interaction
region in inhomogeneous plasmas allows for a cooperative
interaction between laser beams with a correspondingly
short coherence length [21]. However, the cooperative
nature and localization of the instability also provides a
unique path to TPD suppression by decoupling the multi-
beam instability.
In this Letter, we show that frequency detuning of the

drive laser beams can suppress the TPD instability and
corresponding hot-electron generation in direct-drive ICF
using relatively narrow-bandwidth existing lasers. Three-
dimensional simulations using realistic plasma conditions
and the laser configuration for an OMEGA implosion
indicate that frequency detuning of Δω=ω0 ∼ 0.7%
(1.76 nm) is sufficient to decouple a pair of laser beams,
effectively doubling the intensity threshold for the onset
of hot-electron generation. The simulations show that
suppression of the absolute instability [9] is sufficient to
eliminate TPD-driven hot-electron production and that
0.7% frequency detuning would be enough to eliminate
TPD-driven hot-electron production in current OMEGA
implosions. Further increases in the available detuning
would allow the laser to be divided into more distinct
frequencies, which can further increase the instability
threshold and open up the ICF design space enabling more
hydrodynamically efficient implosions. This result is in
contrast to using continuous-bandwidth lasers, where the
same reduction in hot electrons would require at least as
much bandwidth, but is not achievable with current ICF
laser systems.
It was recognized in early studies that temporal incoher-

ence in the form of laser bandwidth could be used to suppress
laser-plasma instabilities [22–24], but the large-scale glass
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lasers that are currently used to conduct ICF experiments are
nearly monochromatic (δω=ω0 < 0.1%, where δω is the
laser bandwidth). Frequency detuning (i.e., introduction of
multiple discrete frequencies) of a fraction of the laser beams
has been used to control symmetry in indirect-drive ICF
experiments [25] and to mitigate cross-beam energy transfer
in polar-direct-drive experiments at the National Ignition
Facility (NIF) [26]. This technique was generally not
expected to be useful for TPD suppression. Early work
showed that the single-beam homogeneous temporal growth
rate (γ0) could be reduced by a factor of γ0=δω when
δω ≫ γ0 [22,27,28]. The homogeneous growth rate for
TPD can easily be ∼1% of the laser frequency for ICF
conditions, which suggests δω=ω0 ≫ 1% is required to have
a significant impact on TPD [29,30]. However, in an
inhomogeneous plasma, these results are only directly
applicable to instabilities that saturate convectively (i.e.,
undergo finite spatial amplification) because the convective
gain is directly related to the linear growth rate. Two-plasmon
decay becomes absolutely unstable (temporal growth at a
fixed point in space) when the convective gain is relatively
small (≲2π) [31]. The linear growth rate plays a reduced
role in absolute instabilities because they always grow until
saturated by some nonlinear mechanism.
Two-plasmon decay simulations were performed using

the LPSE (laser-plasma simulation environment) code [11].
The LPSE modules used in this study were the pseudo-
spectral solver [32] for the extended Zakharov equations for
TPD and the hybrid particle evolution (HPE) module. The
extended Zakharov equations for TPD are time-enveloped
fluid-moment equations of the plasma kinetic equations,
describing the nonlinear interaction between EPWs and
low-frequency ion motion driven by a pump electromag-
netic field and the subsequent kinetic, quasilinear evolution
of the electron distribution function, in which the density
gradient is treated perturbatively [33,34]. The HPE module
computes electron trajectories in the electrostatic fields,
describedby the fluid-moment equations, to self-consistently
evolve the electron Landau damping part of the electron
susceptibility [21]. LPSE has had considerable success in
reproducing previous experimental results, including mea-
sured plasma wave amplitudes [11] and hot-electron gen-
eration [21], which suggests that the simulation results give a
quantitative representation of what would be observed in
experiments. The HPE module does not evolve the real part
of theEPWdispersion function, andamodification to the real
component of the dispersion function, for instance, due to
kinetic effects, could potentially modify the amount of
detuning required to suppress the absolute instability.
The 3D LPSE simulations were performed in a 67.5 ×

13 × 13 − μm3 region on a 1688 × 324 × 324 cell Cartesian
grid. There was a linearly varying density along the x
direction fromne=nc ¼ 0.19 to 0.27, wherene is the electron
density and nc is the critical density for the 351-nm drive
beams. This gives a scale length of Ln ¼ 211 μm at nc=4.

A plastic (CH) plasma was used with an electron (ion)
temperature of Te ¼ 2.6 keV (Ti ¼ 1.0 keV) and a Mach
1.2 flow antiparallel to the density gradient. These plasma
conditions were determined from radiation-hydrodynamic
simulations of an OMEGA implosion using the 1D code
LILAC [35]. A large number of other simulations were
performed using a variety of plasma conditions, but the
qualitative results were not sensitive to the choice of back-
ground plasma conditions. Because the results are sensitive
to the relative phase of the drive beams, all of the LPSE results
correspond to the mean and standard deviation of five-run
ensembles with random polarizations, phases, and speckle
patterns.
Figure 1 shows the absolute instability thresholds from

3D LPSE simulations that were designed to emulate the
quarter-critical conditions in an OMEGA implosion near
the time of peak hot-electron production. The overlapped
laser intensities are normalized to the analytic result for
the absolute threshold of a monochromatic plane wave,
ISimon ¼ 233Te=Ln, in units of 1014 W=cm2 [9]. A single
OMEGA “hex”was simulated consisting of six laser beams
incident from the corners of a hexagon, each with an angle
of 23° relative to the density gradient (Fig. 2). The beams
were simulated with phase plates and polarization smooth-
ing, as described in Ref. [11]. The simulations were
performed with two or three laser frequencies, and two
different methods were used to split the beams into multiple
frequencies: (1) “multicolor,” where each beam was split
into Nω frequencies with each frequency component
containing 1=Nω of the laser energy, and (2) “tiled,” where
each beam is monochromatic, but the different beams have
different frequencies (alternating around the corners of the

FIG. 1. LPSE-simulated absolute TPD thresholds for various
types of frequency detuning. The curves correspond to three-
color multicolor (red squares) and tiled (blues circles) detuning
and two-color multicolor (yellow diamonds) and tiled (green
triangles) detuning. The arrows at the right edge indicate the
expected asymptotic thresholds.
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hexagon). In all cases, Δω=ω0 ≈ 0.7% was sufficient to
reach the asymptotic (Δω → ∞) threshold (Δω is the
nearest-neighbor frequency separation).
Despite the multicolor approach being superior from the

point of view of TPD suppression because of the higher
instability thresholds, the tiled approach is included here
because it is an easier laser architecture to implement and
resembles what is currently available on large-scale laser
facilities. For instance, the NIF [36] uses a tiled laser
architecture that currently has Δω=ω0 ≈ 0.15%, with
Δω=ω0 ¼ 0.35% achievable with minor modifications.
One of the OMEGA EP [37] beams has recently been
upgraded to have Δω=ω0 ≈ 1%. It is suggested that a first
practical implementation of the multicolor approach should
proceed by shifting the frequency of multiple nearby laser
beams (e.g., dividing a NIF quad into multiple colors)
rather than copropagating multiple colors down a single
beam line.
Figure 2 illustrates why the multicolor and tiled

approaches to frequency detuning give different instability
thresholds in the asymptotic limit of large Δω=ω0. In both
cases, the distinct frequencies decouple in the asymptotic
limit, but in the multicolor approach, the threshold is
simply Nω times the threshold for Δω ¼ 0 because the
decoupling effectively results in Nω six-beam interactions
that are identical to the six-beam interaction at zero
frequency detuning. When the individual beams have
different frequencies, there are only 6=Nω beams in each
of the Nω groups of decoupled monochromatic beams. In
this case, the effective decoupled configurations are not
equivalent to the original six-beam configuration. For
random polarizations, the different groups of decoupled
beams will have different thresholds, and the overall
threshold for the configuration to be absolutely unstable
will be Nω times the minimum threshold for the 6=Nω
different groups. This qualitative picture suggests an

alternative way to calculate the asymptotic thresholds in
the tiled configuration: run Nω monochromatic simulations
with 6=Nω beams (random polarizations) and take Nω

times the minimum threshold as the expected asymptotic
threshold. For the three-color case, this corresponds to
running independent monochromatic simulations for each
of the three two-beam configurations shown in the bottom
right portion of Fig. 2. Repeating this procedure for an
ensemble of five realizations of polarization and phase
gives asymptotic thresholds of 2.27� 0.30 for Nω ¼ 3 and
1.84� 0.12 for Nω ¼ 2, which are in agreement with the
corresponding results in Fig. 1 (2.09� 0.15 for Nω ¼ 3
and 1.92� 0.16 for Nω ¼ 2).
Figure 3 shows the fraction of incident laser energy

converted into hot electrons (>50 keV) in six-beam,
three-color LPSE simulations. Two laser intensities were
used: 4 × 1014 and 7 × 1014 W=cm2, which correspond
to Ithr=ISimon ¼ 1.63 and 2.86, respectively. At I ¼
4 × 1014 W=cm2, only 0.1% frequency detuning was
required to eliminate hot-electron production in the multi-
color configuration, whereas 0.3% was required in the tiled
configuration. At I ¼ 7 × 1014 W=cm2, 0.7% detuning was
required in the multicolor configuration, and no amount of
detuning was sufficient to completely suppress hot-electron
production in the tiled configuration because some of the
frequency-matched beam pairs were still above the absolute
threshold, even when the various colors were completely
decoupled. This is consistent with the results shown in
Fig. 1, where Ithr=ISimon never gets above 2.86 in the three-
color tiled configuration, which is required to suppress the
absolute instability at I ¼ 7 × 1014 W=cm2.

FIG. 2. Schematic of the effect of three-color multicolor (left)
and tiled (right) frequency detuning. The arrows correspond to
one realization of random polarization with polarization smooth-
ing. The third row corresponds to the three effective interactions
occurring at different densities when the three frequencies are
fully decoupled; the absolute threshold is three times the
minimum threshold.

FIG. 3. LPSE-simulated fractionof incident laser energy converted
into hot electrons with energy > 50 keV using OMEGA plasma
conditions and three-color beams. The four curves correspond to
the tiled (blue circles) andmulticolor (red squares) configurations at
I ¼ 4 × 1014 W=cm2 and the tiled (green triangles) and multicolor
(yellow diamonds) configurations at I ¼ 7 × 1014 W=cm2. The
hot-electron production was taken as the average over 5 ps after
the simulations reached a quasi steady state (12 ps).
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Note that the laser intensities used in Fig. 3 correspond to
the overlapped intensity at the quarter-critical surface. The
quoted laser intensity for an ICF implosion design typically
corresponds to the peak laser power divided by surface area
of the undriven target, which is about 3× the intensity at
nc=4 in OMEGA implosions. The 3× reduction in intensity
is predominantly a result of four effects: (1) the quarter-
critical surface is at a larger radius than the initial target
surface during the time that the drive lasers are on, (2) laser
energy is absorbed on the way to the critical surface
through collisional absorption, (3) cross-beam energy
transfer reduces the amount of laser energy reaching the
quarter-critical surface, and (4) only the intensity from
the six beams closest to the target normal was included in
the LPSE simulations. The simulations at 4 × 1014 W=cm2

correspond to the peak laser intensities that are currently
available on OMEGA. The hot-electron fractions shown
in Fig. 3 are a few times higher than what is observed in
OMEGA implosions because they correspond to the
instantaneous fractions of the laser energy at the quarter-
critical surface rather than time-averaged fractions of the
incident laser energy.
To show the physical behavior in the simplest possible

configuration, 2D LPSE simulations were performed using
normally incident plane waves. The grid and plasma
conditions in the 2D simulations were identical to the
3D simulations along the x and y dimensions except that
the EPW damping and flow were turned off. Figure 4
shows the absolute instability thresholds from LPSE sim-
ulations of 2–5 p-polarized collinear plane-wave beams
with electric field (enveloped at ω0)

E0 ¼ ŷ
E0

2

XNω

j¼1

eiðkjx−ΔωjtþϕjÞ þ c:c:;

where ϕj is the initial phase of the jth beam, Δωj ¼
½j − ðNω þ 1Þ=2�Δω is the frequency shift, kj ¼ ðω0=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Δωj=ω0Þ2 − ne=nc

q
, and in cgs units E0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πI=½cð1 − ne=ncÞ1=2�
p

(note that the maximum fre-
quency separation increases with increasing Nω because
Δω is defined as the frequency difference between nearest-
neighbor frequencies). At zero wavelength detuning, the
analytic absolute threshold (ISimon) is reproduced. As
Δω → ∞, the threshold goes to NωISimon because the
absolutely unstable modes become spatially decoupled
(i.e., each frequency independently drives TPD at its own
quarter-critical surface).
Figure 5(a) shows the spatial structure of the absolutely

unstable plasma modes from an LPSE simulation of a
monochromatic plane wave. The absolutely unstable
modes occur over a narrow spatial region (∼2 μm wide)
centered at x ≈ 12 μm (ne=nc ¼ 0.244). Figure 5(b) shows
the spatial structure of the absolute instability for
Δω=ω0 ¼ 1%, where the absolutely unstable regions have
separated spatially by ∼4.1 μm. This corresponds to a 2%
change in density, consistent with the expectation that the
resonant density should vary as the square of the resonant
frequency. Although spatial separation of the absolutely
unstable modes gives a clear intuitive picture of why the
asymptotic threshold increases by a factor of Nω, the
different frequencies in the multicolor beams decouple at
much smaller Δω than is required for complete spatial
separation, which suggests that dephasing due to the
frequency mismatch between the different colors plays
an important role in determining the threshold. Note that,
even when the modes have separated spatially, the wave-
length of the transverse beat between the unstable modes is
shorter in the two-color case. Amplitude modulation in the
pump beam causes the most-unstable transverse wave
number to be larger (shorter wavelength) in the two-color
case because of its square root dependence on the laser
intensity [9]. It is possible that amplitude modulation in the

FIG. 4. Absolute instability thresholds from 2-D LPSE simu-
lations of collinear plane-wave beams using two (blue circles),
three (red squares), four (green triangles), and five (yellow
diamonds) colors.

 (a)  (b)

FIG. 5. Color maps of the electrostatic potential from 2D LPSE

simulations late in time (t ¼ 10 ps) when the field structure is
dominated by the absolutely unstable modes. (a) Corresponds to
zero frequency detuning and (b) corresponds to 1% frequency
detuning (two color). Only a small portion of the simulation
region is shown corresponding to ne=nc ¼ 0.23–0.26..
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pump beam is also the reason that the asymptotic thresholds
in Fig. 4 are not exactly equal to NωISimon.
An unintuitive aspect of the results shown in Fig. 4 is that

the instability threshold increases most rapidly in the two-
color case at small Δω. Our expectation was that increasing
the number of colors would increase the decoupling rate
because the effective amount of temporal incoherence is an
increasing function ofNω. To verify that this is not an artifact
of the time-enveloped pseudospectral solver used in LPSE, an
independent test was performed by solving Eqs. (1) and (2)
from Simon et al. [9], which are not time enveloped, using
finite differencing. The calculations were performed on a
subscale grid, but the same qualitative behavior was
observed. The large variation in threshold over the ensemble
of initial phases for Nω > 2 suggests that amplitude modu-
lation is having a significant impact on the thresholds.
When speckled beams are used, the threshold always
increases with increasing Nω, so this effect was not present
in the 3D calculations, all of which had speckled beams.
In summary, we have shown that hot-electron mitigation

can be achieved using the modest amount of laser frequency
detuning that is available on existing laser facilities (Δω=
ω0 ∼ 0.7%). Three-dimensional LPSE simulations using
realistic direct-drive ICF conditions show that decoupling
of the multibeam instability significantly increases the
absolute instability threshold, and that suppression of the
absolute instability effectively eliminates TPD-driven hot-
electron generation. The validity of these results is supported
by the fact that LPSE simulations have reproduced bothwave-
amplitude and hot-electron measurements from previous
experiments. Thismethod of TPDmitigation can be scaled to
higher laser intensities by increasing the available frequency
detuning, which can open up the design space for future ICF
implosions.
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