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We demonstrate theoretically that a toroidal Alfvén eigenmode (TAE) can parametrically decay into a
geodesic acoustic mode and kinetic TAE in a toroidal plasma. The corresponding threshold condition for
the TAE amplitude is estimated to be jδB⊥=B0j ∼Oð10−4Þ. Here, δB⊥ and B0 are, respectively, the
perturbed magnetic field of the pump TAE and the equilibrium magnetic field. This novel decay process, in
addition to contributing to the nonlinear saturation of energetic-particle or α-particle driven TAE instability,
could also contribute to the heating as well as regulating the transports of thermal plasmas.
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Introduction.—This work is a theoretical analysis of a
novel nonlinear process by which power is transferred
nonlocally in velocity space from energetic particles (EPs)
to thermal plasma components. This mechanism is medi-
ated by an efficient parametric decay of toroidal Alfvén
eigenmodes (TAEs) [1] into geodesic acoustic modes
(GAMs) [2] and kinetic TAE (KTAE) [3,4], which control
power transfer to thermal ions (α channeling) and thermal
electrons (anomalous α-particle slowing-down), respec-
tively. The first part of this Letter presents the nonlinear
decay instability and gives an estimate of the threshold
condition on the TAE intensity for this novel process to
occur. It also computes the resultant anomalous thermal ion
and electron heating rates. As the critical TAE intensity
threshold is comparable with that of other important non-
linear processes in burning fusion plasmas, we conclude
that the new mechanism analyzed here should play an
important role in realistic conditions. It could also regulate
thermal plasma fluctuation and, thus, transport via the
nonlinear generation of GAMs [5]. In the second part of
this Letter, we discuss how this novel nonlinear process can
be studied by nonlinear gyrokinetic simulations as well as
how it can be observed and characterized experimentally.
Energetic particles and their related physics are crucial

for burning plasmas in magnetically confined fusion
devices as EPs contribute significantly to the total power
density. In particular, two important aspects are heating of
thermal plasmas and excitation of symmetry breaking
collective modes. Plasma heating, especially of bulk ions,
is crucial for fusion reactivity. Coulomb collisions prefer-
entially transfer EP energy to electrons at high speed and,
thus, means for effectively transferring energy from fusion
α’s to bulk ions, known as α channeling, have been
proposed and explored [6]. Symmetry breaking collective
modes excited by EPs, on the other hand, could have

deleterious effects on EPs and thermal plasma confinement.
Among these, noteworthy are shear Alfvén wave (SAW)
instabilities with group velocity nearly aligned with the
equilibrium magnetic field and wave-particle resonance
condition with 3.5 MeV fusion α’s easily satisfied in
burning plasmas such as ITER [7]. EP and Alfvén wave
physics in fusion plasmas are reviewed in Ref. [8].
Because of equilibrium geometry and/or plasma non-

uniformities, SAW instabilities manifest themselves as
various Alfvén eigenmodes in magnetically confined plas-
mas, e.g., TAE [1]. TAE can be driven unstable by EPs at a
relatively low threshold [9,10] and lead to EP transport and
degrade overall plasma confinement. The transport rate is
related to TAE amplitude and spectrum, and, thus, under-
standing the nonlinear dynamics of TAE is important for
assessing the properties of burning plasmas in future
reactors.
Nonlinear mode-mode coupling, as one of the two routes

for TAE nonlinear dynamics [11], is relatively less inves-
tigated [12–15] than nonlinear wave-EP interactions
[16,17]. TAE enhanced coupling to SAW continuum due
to downward spectrum cascading via ion induced
scattering in the low-β (β ≪ ϵ2) and the long wavelength
(k2⊥ρ2i < ω=Ωci) limit is analyzed in Ref. [12]. Here, β≡
8πn0T=B2

0 is the ratio of plasma pressure to equilibrium
magnetic field pressure with n0 and T being the equilibrium
plasma density and temperature, respectively. B0 is the
equilibrium magnetic field, and ϵ≡ r=R0 is the inverse
aspect ratio with r and R0 being the tokamak minor and
major radii. kθ ≡m=r is the poloidal wave number with m
being the poloidal mode number, and ρi ¼ vi=Ωci is the ion
gyroradius with vi being the ion thermal velocity and Ωci
the ion cyclotron frequency. Nonlinear modification of the
TAE gap structure by nonlinear distortions of equilibrium
magnetic field or density is discussed in Refs. [13,14],
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respectively. In the former one, in particular, the emphasis
is on the compressibility of them ¼ 1 quasimode instead of
its heavy ion Landau damping as discussed in Ref. [12].
The nonlinear generation of axisymmetric zero frequency
zonal structures (ZFZS) via modulational instability,
including both zonal flow and zonal current, is investigated
in Refs. [15,18]. Parametric decay of TAE into GAM [2],
i.e., the fast varying zonal flow in the acoustic frequency
range, and a lower frequency TAE, is investigated in
Ref. [19], and it is found that TAE spontaneous decay
occurs only when the pump TAE is localized in the upper
half of the SAW continuum gap, which generally is not the
case for typical tokamak parameters.
In this work, a new novel mechanism of TAE decaying

into GAM and small scale lower kinetic TAE (LKTAE)
[3,4,20] is proposed. Besides the apparent consequence on
TAE nonlinear saturation, the nonlinear process proposed
here also has important implications on both thermal
plasma heating and confinement. The nonlinearly gener-
ated GAM and LKTAE are damped via ion and electron
Landau damping, respectively, leading to ion as well as
electron heating. On the other hand, GAM as finite
frequency zonal flow may interact with other types of
turbulence, e.g., drift waves (DWs), leading to cross-scale
couplings and potentially improved confinement [5].
Noting that GAM corresponds to finite frequency con-
vective cells in toroidal geometry, while kinetic TAEs can
be viewed as standing wave generated due to the coupling
of two counterpropagating kinetic Alfvén waves (KAWs)
via toroidicity [3], the current work can, thus, be under-
stood qualitatively, as generalization to toroidal geometries
of Ref. [21], where finite frequency convective cell
generation by KAWs in uniform plasma is discussed.
Parametric decay of TAE.—To investigate the nonlinear

interactions among the pump TAE (ω0, k0), GAM
(ωG, kG), and LKTAE (ωL, kL), the scalar potential δϕ
and parallel vector potential δAk are adopted as the field
variables. One then has δϕ ¼ δϕ0 þ δϕG þ δϕL, with the
subscripts 0, G, and L denoting pump TAE, GAM, and
LKTAE, respectively. The parametric decay of TAE to
GAM and LKTAE is then studied within the framework of
nonlinear gyrokinetic theory. For TAE and LKTAE with
high toroidal mode numbers in magnetized plasmas, the
well-known ballooning-mode decomposition [22] in the
ðr; θ;ϕÞ field-aligned flux coordinates is assumed:

δϕ0 ¼ A0eiðnϕ−m0θ−ω0tÞ
X
j

e−ijθΦ0ðx − jÞ þ c:c:;

δϕL ¼ ALeiðnϕ−m0θ−ω0tÞe−ið
R

k̂Gdr−ωGtÞ

×
X
j

e−ijθΦLðx − jÞ þ c:c:

Here, ðm ¼ m0 þ j; nÞ are the poloidal and toroidal mode
numbers,m0 is the reference value ofm, nqðr0Þ ¼ m0, qðrÞ

is the safety factor, x ¼ nq −m0 ¼ nq0ðr − r0Þ, k̂G is the
radial envelope wave number due to GAM modulation and
k̂G ≡ nq0θk in the ballooning representation, Φ is the fine
radial structure associated with the parallel wave number kk
and magnetic shear, and A is the envelope amplitude. The
other notations are standard.
For the (secondary) generated GAM we assume it is

predominantly electrostatic, with both the usual mesoscale
structure and an additional fine-scale radial structure [18]
due to the radially localized structure of the pump TAE,
thus,

δϕG ¼ AGe
ið
R

k̂Gdr−ωGtÞX
j

ΦGðx − jÞ þ c:c:

Here, ΦG is the fine-scale structure of GAM [18], and the
summation over j is the summation over the radial
positions where the pump TAE poloidal harmonics are
localized. As a result, kG ¼ k̂G − i∂r lnΦGêr, and one
typically has j∂r lnΦGj ≫ jk̂Gj.
The nonlinear GAM equation can be determined from

the nonlinear gyrokinetic vorticity equation, and one
obtains

EG�δϕG� ¼ iðc=B0ωGÞkGkθ;0× ½Γ0−ΓL

− ðb̂L − b̂0Þk2k;0V2
Aσ0�σL=ðω0ωLÞ�δϕ0�δϕL: ð1Þ

The two terms on the right-hand side of Eq. (1) are,
respectively, the generalized Reynolds and Maxwell
stresses, valid for arbitrary k⊥ρi. Here, Γk ≡ hJ2kF0=n0i
with h� � �i≡ R ð� � �Þd3v denoting velocity space integration,
Jk ≡ J0ðk⊥ρÞ with J0 being the Bessel function of zero
index, ρ ¼ v⊥=Ω, F0 is the equilibrium particle distribution
function, kk ≡ ðnq −mÞ=ðqR0Þ is the parallel wave num-

ber, b̂ ¼ k2⊥ρ2i =2, σk ≡ 1þ τ − τΓk, τ≡ Te=Ti, and σk ≠ 1

denotes finite parallel electric field δEk and, thus, deviation
from the ideal magnetohydrodynamic (MHD) condition
δEk ¼ 0 due to kinetic effects. Furthermore, EG is the linear
GAM dispersion function, defined as [23]

EG≡ hð1−J2GÞF0=n0i−Ti

X
s

hqsJGωdδHL
Gi=ðn0e2ωδϕGÞ;

with δHk being the nonadiabatic component of the guiding
center distribution function [24] and ωd ¼ ðv2⊥ þ 2v2kÞ=
ð2ΩR0Þðkr sin θ þ kθ cos θÞ being the magnetic drift
frequency.
Equation (1) has two radial scales due to the weak

ballooning nature of TAE [18]. AssumingΦG� ≡Φ0�ΦL as
the fast radial varying component [18] of GAM, one then
derives the envelope equation of GAM:

EG�AG� ¼ iðc=B0ωGÞkθ;0α̂GA0�AL: ð2Þ
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Here, introducing radial integration as averaging over
length scales intermediate between the fine radial scale
and envelope mesoscale discussed above, we have α̂G≡
ðR Φ0�ΦLdrÞ−1

R
Φ0�ΦLkG½Γ0−ΓL− ðb̂L− b̂0Þk2kV2

Aσ0�σL=
ðω0ωLÞ�dr.
The nonlinear LKTAE generation due to the coupling

between the pump TAE and GAM is described by

ELδϕL ¼ i
c
B
kGkθ;0

�
Γ0 − ΓG

ωL
þ 1 − ΓL

σLω0

σ0

�
δϕG�δϕ0: ð3Þ

Here, EL ≡ ð1 − ΓLÞ − k2kV
2
AσLb̂L=ω

2
L is the WKB

dispersion function of LKTAE, and the radial eigenmode
dispersion relation of LKTAE can be derived noting that
k2kV

2
A ∝ ð1 − ϵ0 cos θÞ with ϵ0 ≡ 2ðr=R0 þ Δ0Þ, Δ0 repre-

senting finite Shafranov shift and σL ¼ 1þ τ − τΓL ≠ 1
due to ion finite Larmor radii effects. Noting that
ωL ¼ ω0 − ωG, the nonlinear coupling coefficient of
Eq. (3) recovers that of Eq. (10) of Ref. [21] for KAW
lower sideband generation by pump KAW beating with
finite frequency convective cell, when only the electrostatic
convective cell generation is considered.
Noting that ΦG ¼ Φ0ΦL� , and proceeding as for Eq. (2)

to remove fine-scale fast radial variations, the eigenmode
equation of LKTAE can be derived as

ÊLAL ¼ iðc=B0Þkθ;0α̂LAG�A0; ð4Þ

with ÊL ≡ R
drjΦLj2EL and α̂L ≡ R

drjΦ0j2jΦLj2kG
½ðΓ0 − ΓGÞ=ωL þ ð1 − ΓLÞσ0=ðσLω0Þ�. For LKTAE with
even mode structure, the eigenmode dispersion relation
can be written as [4,20] ÊL≡ðπk2θρ2iω2

AD̂LÞ=½22ξ̂þ1Γ2ðξ̂þ
1=2Þω2

L�, with D̂L ¼ −2
ffiffiffi
2

p
Γðξ̂þ 1=2Þ=½α̂Γðξ̂Þ� − δWf,

δWf being the normalized potential energy due to thermal
plasma contribution, Γðξ̂Þ and Γðξ̂þ 1=2Þ being Euler
gamma functions, ξ̂≡ 1=4 − ΓþΓ−=ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ−ŝ2ρ̂2K

p
Þ, Γ� ≡

ω2
L=ω

2
A � ϵ0ω

2
L=ω

2
A − 1=4, ω2

A ≡ V2
A=ðq2R2

0Þ, α̂2 ¼
1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ−ŝ2ρ̂2K

p
Þ, ŝ≡ r∂rq=q being the magnetic shear,

and ρ̂2K ≡ ðk2θρ2i =2Þ½3=4þ ðTe=TiÞð1 − iδeÞ� denoting the
kinetic effects associated with finite ion Larmor radii and
electron parallel dynamics. In particular, δe describes dis-
sipative effects associated with electrons, e.g., Landau
damping.
The nonlinear dispersion relation can then be derived

from Eqs. (2) and (4):

ÊLEG� ¼ −ðckθ;0=B0Þ2ðα̂Gα̂L=ωGÞjA0j2: ð5Þ

In the long wavelength (k2⊥ρ2i ≲ 1) limit, Eq. (5) recovers
Eq. (17) of Ref. [19], where a pump TAE decaying into a
GAM and a TAE lower sideband (still a gap mode and not a
damped eigenmode of the discretized continuous spectrum
as in the present case) is discussed.

Noting that the frequency difference between neighbor-
ing LKTAEs is rather small [4], and that GAM frequency
depends on kG and thus kr;L due to finite Larmor-radius and
drift orbit-width effects [23], the impact of frequency
mismatch on the parametric decay process is, in general,
negligible. This, of course, further requires that local GAM
continuum frequency be smaller than ω0 − ωL. Taking
EG� ¼ −2ib̂Gðγ þ γGÞ=ωG, with γG being the collisionless
damping rate of GAM [23], while ÊL ≃ i∂ωL

ÊLrðγ þ γLÞ,
with γL being the radiative damping rate of LKTAE [4,20],
ÊLr being the real part of ÊL and ∂ωL

ÊLr ≡ ∂ÊLr=ð∂ωLÞ,
we then obtain the desired dispersion relation of the
parametric decay process:

ðγ þ γGÞðγ þ γLÞ ¼ −
�

c
B0

kθ;0

�
2 α̂Gα̂LjA0j2
2b̂G∂ωL

ÊLr

: ð6Þ

The condition for the spontaneous excitation of the para-
metric instability is then

−
�

c
B0

kθ;0

�
2 α̂Gα̂LjA0j2
2b̂G∂ωL

ÊLr

> γLγG; ð7Þ

i.e., the nonlinear drive by the pump TAE overcomes the
threshold condition due to GAM and LKTAE damping.
Equation (7), generally, requires a numerical solution

due to its complex dependence on the mode structures and,
thus, equilibrium geometry. Analytical estimations can
be made in the simplified limits, e.g., for b̂L ≪ 1. Noting
that for jb̂kj ≪ 1, Γkðb̂kÞ ≃ 1 − b̂k − 3b̂2k=4 and σk ≃ 1þ
τðb̂k þ 3b̂2k=4Þ, one then has α̂G ≃ kGðb̂L − b̂0Þ½1 − ω2

A=
ð4ω0ωLÞ� < 0 and α̂L≃ðkG=ωLÞfb̂G−b̂0þb̂L½ð1þτb̂0Þ=
ð1þτb̂LÞ�½ðω0−ωGÞ=ω0�g>0. So the right-hand side
of Eq. (6) has a positive sign. Noting that jδBr;0j∼
jckθkk;0A0=ω0j, the threshold condition on pump TAE
amplitude can be estimated as

�
δBr

B0

�
2

∼
γLγG
ω2
0

k2k;0
k2L

4

ϵ0
∼Oð10−9Þ; ð8Þ

with typical parameters such as jγL=ω0j ∼ jγG=ω0j ∼ 10−2

[4,23], kLρi ≲ 1, and kkρi ∼ 10−3. The nonlinear cross
section of the analyzed nonlinear decay instability is
comparable to other channels for TAE nonlinear saturation
via wave-wave coupling investigated in the short wave-
length (k2⊥ρ2i > ω=Ωci) limit [25], e.g., ZFZS genera-
tion [15,19].
Impact on plasma heating.—The process discussed here,

besides its apparent impact on TAE saturation, also has an
effect on plasma heating, since the generated GAM and
LKTAE would be dissipated through ion and electron
Landau damping, respectively. Thus, the GAM ion Landau
damping provides an additional channeling of fusion-α
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power density to bulk ion heating [6,26], whereas LKTAE
electron Landau damping contributes to anomalous α-
particle slowing-down. The heating rate can be estimated
by Eqs. (2) and (4) with the help of an additional equation
describing the feedback of the two sidebands to the pump
TAE, which can be obtained closely following the deriva-
tion of Eq. (3):

Ê0A0 ¼ −iðc=B0Þkθ;0α̂0AGAL; ð9Þ
with Ê0 ≡ R

drjΦ0j2½ð1 − Γ0Þ − k2kV
2
Aσ0b̂0=ω

2
0� being the

eigenmode dispersion function of pump TAE, and
α̂0≡

R
drjΦ0j2jΦLj2kG½ðΓL−ΓGÞ=ω0þð1−Γ0ÞσL=ðσ0ω0Þ�.

The three-wave nonlinear dynamic equations can then be
cast as

ð∂t − γ0ÞA0 ¼ −
c

B0∂ω0
Ê0r

kθ;0α̂0AGAL; ð10Þ

ð∂t þ γG�ÞAG ¼ −
c

2B0b̂G
kθ;0α̂GA0�AL; ð11Þ

ð∂t þ γLÞAL ¼ c

B0∂ωL
ÊLr

kθ;0α̂LAG�A0: ð12Þ

Here, γ0 is the linear growth rate of pump TAE due to
resonant EP drive. The LKTAE and GAM amplitudes
can be estimated from the fixed point solution of the above
equations, and one obtains jALj2 ¼ −2γ0γGb̂G∂ω0

Ê0r=

½ðc=B0Þ2k2θ;0α̂0α̂G� and jAGj2 ¼ γ0γL∂ωL
ÊLr∂ω0

Ê0r=
½ðc=B0Þ2k2θ;0α̂0α̂L�, respectively. Thus, the power of ions

heating by GAM Landau damping is then Pi ¼
2γGωG∂ωG

ÊGrjAGj2 and the electron heating power by

LKTAE is Pe ¼ 2γLωL∂ωL
ÊLrjALj2. Note that, “GAM

channeling” was proposed in Ref. [26], where the ion
Landau damping of the GAM resonantly excited by EPs
was investigated. However, due to the low GAM frequency
compared to the high characteristic frequencies of fusion
α’s, this process is, in general, inefficient in burning
plasmas.
Numerical or experimental verification.—To verify the

nonlinear process proposed and analyzed here, one can
resort to either numerical simulations or experiments. In
order to properly account for all the relevant physics
including nonlinear coupling in the short wavelength limit
and dissipation due to electron dynamics such as collision-
less Laudau damping, numerical simulation codes with
nonlinear gyrokinetic treatment of ions and drift kinetic
treatment of electrons are required.
For experimental observations, meanwhile, noting that

the pump TAE and, thus, the generated GAM and LKTAE
are localized in the tokamak center, where the TAE
drive (by EPs) is maximum, and that jkGj ∼ jkr;Lj∼
O(½ϵ0ρ2i =ðn2q02Þ�−1=4), diagnostics with high resolution
in both radial structure and frequency for local (not line
averaged) fluctuations are required. Possible diagnostics

could be phase contrast imaging [27], beam emission
spectroscopy [28], or electron cyclotron emission imaging
[29]. Better signal-to-noise ratio is required for clearer
demonstration of the nonlinear decay process. One
option is to set up the experiments in the condition for
minimized threshold conditions, which generally requires
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7=4þ Te=Ti

p
> 1 for weak GAM Landau damping and

3%≳ βi > ½λϵ=ð2qÞ�2 for weak TAE or LKTAE Landau
damping, and ωG > ω0 − ωl due to the frequency match-
ing constraint. Here, ωl is the lower accumulational point
frequency of the toroidicity induced SAW continuum gap
and λ expresses the fraction of ω0 − ωl in units of the gap
width. For the process discussed here to dominate
over other processes in long wavelength limits [12–14],
one further requires k2⊥ρ2i > ω0=Ωci, which corresponds
to ðTi=TEÞ1=2=ðqϵ1=2Þ > ω0=Ωci for EP driven TAEs.
Another possibility is using antenna excitation of TAE
[30,31] such that there is no wave-EP interactions, and one
can focus on the decay process. The threshold TAE
amplitude can then be measured directly by scanning the
antenna strength. Further insights and understanding can be
achieved by antenna excitation of TAE and LKTAE at the
same time to observe the generation of GAM. The
excitation of TAE and KTAE at the same time has more
applications than purely academic study, since in burning
plasmas TAE and KTAE (more likely upper KTAE) can be
excited by EPs at the same time, and the generation of
GAM can directly influence plasma confinement as well as
α channeling, as we have discussed above. The relative
intensity ratio of LKTAE to pump TAE can be roughly
estimated from the fixed point solutions of Eqs. (10)–(12),
and is given by A2

L=A
2
0 ¼ ðγ0=γLÞð∂ω0

Ê0;r=∂ωL
ÊL;rÞ×

ðα̂L=α̂0Þ, which, for typical joint European Torus (JET)
parameters, can be estimated as A2

L=A
2
0 ∼ 0.1.

Conclusion and discussion.—In this Letter, TAE
decaying into a GAM and a LKTAE with the same poloidal
and toroidal mode numbers of the pump TAE is inves-
tigated as a possible channel for TAE nonlinear saturation.
This channel is possible when the GAM frequency is larger
than the difference between the pump TAE frequency and
the lower accumulation point frequency of the toroidicity
induced SAW continuum gap; i.e., βq2 ≫ ϵ2. The non-
linear dispersion relation for the decay instability is
derived, valid for arbitrary wavelength. The conditions
for the decay instability to take place, i.e., the threshold
condition for the pump TAE amplitude to overcome GAM
and LKTAE damping, is given by Eq. (7). This threshold
condition needs, generally, numerical solution with the
mode structure and geometry carefully accounted for.
However, in the k2⊥ρ2i ≲ 1 limit, it can be analytically
simplified and estimated to be jδBr=B0j2 ∼ 10−9, compa-
rable to other channels for TAE nonlinear saturation
via wave-wave coupling in the short wavelength
(k2⊥ρ2i > ω=Ωci) limit.
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Besides the impact on TAE saturation, the decay process
discussed in this Letter will also contribute to the channel-
ing of EP or fusion-α power density to bulk thermal plasma
heating. The GAM Landau damping will lead to bulk ion
heating and, thus, has direct impact on steady-state oper-
ation of a fusion reactor, whereas LKTAE is predominantly
damped by electron kinetics, and therefore will contribute
to the anomalous slowing-down of fusion α’s. An estimate
of the power to ion and electron heating are derived,
respectively.
As a final remark, it is worth noting that the GAM radial

structures generated by the novel mechanism proposed in
this work are typically comparable with the DW radial
correlation length. The nonlinear generated GAM, thus,
provide additional benefits of regulating the DW turbulence
and, consequently, improved confinement. In this respect,
as noted above, EP could be regarded as an effective
“nonlinear free-energy source” for the GAM fluctuations.
Thus, the present nonlinear mechanism may be considered
as an example and evidence of the unique role played by EP
as mediators of cross-scale couplings in burning plasmas of
fusion interest [32].
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