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We propose and analyze a scanning microscope to monitor “live” the quantum dynamics of cold atoms
in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via
dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement
theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave
packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the
microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case,
for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the
spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent
quantum nondemolition measurement.
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Spatially resolved observation of individual atoms is a
key ingredient in exploring quantum many-body dynamics
with ultracold atoms. This is highlighted by the recent
development of the quantum gas microscope [1] where
fluorescence measurements provide us with single shot
images of atoms in optical lattices. Fluorescence imaging
is, however, an inherently destructive quantum measure-
ment, as it is based on multiple resonant light scattering
resulting in recoil heating (see, however, Ref. [2]). In
contrast, quantum motion of cold atoms can also be
observed in nondestructive, weak measurements, realizing
the paradigm of continuous measurement of a quantum
system [3–5]. Below we describe and analyze a quantum
optical setup for a scanning atomic microscope employing
dispersive interactions in a cavity QED (CQED) setup [6],
where the goal is to achieve continuous observation of the
density of cold atoms [7] with subwavelength resolution
[8]. We will be interested in operating modes, where we
either map out spatial densities of energy eigenstates in
single scans as an emergent quantum nondemolition
(QND) measurement [9,15] or we monitor at a fixed
position the time-resolved response to “see” quantum
motion of atoms.
The operating principle of the microscope is illustrated

as a CQED setup in Fig. 1: We assume that an atom
traversing the focal region of the microscope signals its
presence with an internal spin flip; i.e., the position, and
thus the motion of the atom, is correlated with its internal
spin degree of freedom. While subwavelength spatial
resolution can in principle be achieved by driving transition
between spin states in the presence of external fields
generating energy shifts with strong spatial gradients
[16,17], this spatial resolution is typically accompanied
with strong forces acting on the atom. Instead, we will

describe below a setup with diminished disturbance, based
on the position-dependent “dark state” in a Λ system [18],
involving a pair of long-lived atomic ground state levels,

(a)

(c)

(d)

(e)

(b)

FIG. 1. (a) Scanning microscope as a CQED setup. The atom
signals its presence in the focal region with subwavelength
resolution as a spin flip, detected via a dispersive cavity coupling
in homodyne measurement. (b) Spatial scan of the focal point
z0 ¼ z0ðtÞ for an atom in a harmonic oscillator (HO).
(c)–(e) Operation of the microscope in the good cavity limit
as emergent QND measurement (see text). For an atom in a
thermal state of the HO we simulate a single measurement run
involving three consecutive spatial scans: (c) conditional trap
populations pnðtÞ (n ¼ 0, 1, 2) and (d) homodyne current I τðtÞ in
arbitrary unit (a.u.). QND measurement prepares the atom in a
trap state jni, and I τðtÞ traces the corresponding density (e) in the
subsequent scan. Times t1, t2 indicate quantum jumps between
trap states (see text).
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representing the spin. We can detect this spin flip non-
destructively with a dispersive interaction, e.g., as a shift of
a cavity mode of an optical resonator. Thus the atom
traversing the focal region of the microscope, as defined by
lasers generating the atomic dark state, becomes visible as a
phase shift of the laser light reflected from the cavity. This
phase shift is revealed in homodyne detection. Such CQED
schemes are timely in view of both the recent progress with
cold atoms in cavity and nanophotonic setups [19–27] and
the growing interests in conditional dynamics of cold atoms
under measurement [28–33].
Below we will develop a quantum optical model of

continuous measurement [4,5,34] of atomic density, via
measurement of the homodyne current for the setup
described in Fig. 1. We adopt the language of the stochastic
master equation (SME) for the conditional density matrix
ρcðtÞ of the joint atom-cavity system, which describes time
evolution conditional to observation of a given homodyne
current trajectory, as “seen” in a single run of an experiment,
and including the backaction on the atom. This will allow us
to address towhat extent the observed homodyne current in a
spatial scan provides a faithful measurement of atomic
density and the expected signal-to-noise ratio (SNR).
Quantum optical model.—We consider a model system

of an atommoving in 1D along the z axis, placed in a driven
optical cavity. To detect the atom at z0 with resolution σ, we
introduce a spatially localized dispersive coupling of the
atom to a single cavity mode of the form

Ĥcoup ¼ ϕz0ðẑÞĉ†ĉ: ð1Þ
Here, ϕz0ðzÞ defines a sharply peaked focusing function of
support σ around z0, and ĉ†ĉ is the photon number operator
for the cavity mode with destruction (creation) operators
ĉ(ĉ†). An implementation of ϕz0ðẑÞ achieving optical
subwavelength resolution σ ≪ λ based on atomic dark
states in a Λ system will be described below. We find it
convenient to write ϕz0ðzÞ≡Afz0ðzÞ with fz0ðzÞ normal-
ized and A a constant with the dimensions of energy.
According to Eq. (1), the presence of an atom inside the

focal region results in a shift of the cavity resonance. This
can be detected with homodyne measurement, where the
output field of the cavity is superimposed with a local
oscillator with phase ϕ. The homodyne current can, for a
single measurement trajectory, be written as IðtÞ ¼ffiffiffi
κ

p hX̂ϕic þ ξðtÞ, i.e., follows the expectation value of the
quadrature operator of the intracavity field, X̂ϕ≡
eiϕĉ† þ e−iϕĉ, up to the (white) shot noise ξðtÞ. Here, κ
represents the cavity damping rate and h� � �ic ≡
Trf…ρcðtÞg refers to an expectation value with respect
to the conditional density matrix of the joint atom-cavity
system.
On a more formal level, we write for the evolution under

homodyne detection the Itô stochastic differential equations
for the homodyne current,

dXϕðtÞ≡ IðtÞdt ¼ ffiffiffi
κ

p hX̂ϕicdtþ dWðtÞ; ð2Þ

with dWðtÞ Wiener noise increments, and the SME for the
conditional density matrix,

dρc ¼ −
i
ℏ
½Ĥ; ρc�dtþ κD½ĉ�ρcdtþ

ffiffiffi
κ

p
H½ĉe−iϕ�ρcdWðtÞ:

ð3Þ

Equation (2) identifies the homodyne current as the
measurement of the quadrature component dXϕðtÞ of the
output field in a time step ½t; tþ dtÞ. The SME Eq. (3)
contains the total Hamiltonian Ĥ ¼ Ĥsyst þ Ĥc þ Ĥcoup,
with Ĥsyst ¼ p̂2

z=2mþ VðẑÞ the Hamiltonian of the atomic
system in an external potential V, Ĥc ¼ iℏ

ffiffiffi
κ

p
Eðĉ − ĉ†Þ the

Hamiltonian for the driven cavity in the rotating frame (we
assume resonant driving for simplicity), and E the coherent
amplitude of the cavity mode driving field. The last two
terms in Eq. (3) account for the backaction of homodyne
measurement. The Lindblad operator D½ĉ�ρ≡ ĉρĉ† −
1
2
ĉ†ĉρ − 1

2
ρĉ†ĉ describes the system decoherence (the

cavity field damping) due to the coupling to the outside
electromagnetic modes, and the nonlinear operator
H½ĉ�ρc ≡ ĉρc − hĉicρc þ H:c: updates the density matrix
conditioned on the observation of the homodyne photo-
current IðtÞ.
The relation between the homodyne current and the local

atomic density is most transparent in the limit where the
cavity response time τc ¼ 1=κ is much faster than other
timescales including atomic motion Ĥsyst and the dispersive
coupling fz0 , i.e., the bad cavity limit. Adiabatic elimina-
tion of the cavity gives

dXϕðtÞ≡ IðtÞdt ¼ 2
ffiffiffi
γ

p hfz0ðẑÞicdtþ dWðtÞ; ð4Þ

with the atomic conditional density matrix ρ̃cðtÞ obeying
the SME:

dρ̃c ¼ −
i
ℏ
½Ĥsyst; ρ̃c�dtþ γD½fz0ðẑÞ�ρ̃cdt

þ ffiffiffi
γ

p
H½fz0ðẑÞ�ρ̃cdWðtÞ: ð5Þ

Here, γ ¼ ½4AE=ðℏκÞ�2 is an effective measurement rate,
and we have chosen ϕ ¼ −π=2 [11]. According to Eq. (4)
the homodyne current IðtÞ is a direct probe of the local
atomic density at z0 with spatial resolution σ [35].
Equations (4) and (5), or Eqs. (2) and (3) in the general
case, provide us with the tools to study the dynamics of the
“microscope” in various modes of operation (see below).
Instead of single trajectories, we can also consider

ensemble averages corresponding to repeated preparation
and measurement cycles. We define a density operator for
the atom-cavity system ρðtÞ ¼ hρcðtÞist as the statistical
average over the conditional density matrices, and an
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averaged homodyne current hIðtÞist ¼
ffiffiffi
κ

p
TrfX̂ϕρðtÞg.

This density operator obeys a master equation (ME),
obtained from the SME Eq. (3) by averaging over
trajectories. Thus, ρcðtÞ → ρðtÞ in Eq. (3) with the sto-
chastic term dropped according to the Itô property
h…dWðtÞist ¼ 0. An analogous ME for the atom ρ̃ðtÞ ¼
hρ̃cðtÞist can be derived from the adiabatically eliminated
SME Eq. (5) [11].
Implementation of the focusing function ϕz0ðẑÞ.—The

atom-cavity coupling Eq. (1) with subwavelength resolu-
tion can be achieved using the position-dependent dark
state of a Λ system [18,36,37]. We consider the level
scheme of Fig. 2(a), where two atomic ground (spin) states
jgi and jri are coupled to the excited state jei with Rabi
frequencies Ω0 and Ω1ðzÞ, respectively. This configuration
supports a dark state jDðzÞi ¼ sin θðzÞjgi − cos θðzÞjri
with tan θðzÞ ¼ Ω1ðzÞ=Ω0, which via destructive interfer-
ence is decoupled from the dissipative excited state jei. We
note that in spatial regions Ω1ðzÞ ≫ Ω0 the atom will be
(dominantly) in state jgi, while in regions Ω1ðzÞ ≪ Ω0 the
atom will be in jri. This allows us to define via the spatial
dependence of Ω1ðzÞ regions with subwavelength resolu-
tion jz − z0j≲ σ ≪ π=k ¼ λ=2, characterized by atoms in
jri. Atoms in jri can be dispersively coupled to the cavity
mode, resulting in a shift g2ðzÞ=Δtĉ†ĉ, with gðzÞ the cavity
coupling much smaller than the detuning Δt [cf. Fig. 2(a)].
Thus, atoms prepared in the dark state experience a shift
[Eq. (1)] with

ϕz0ðzÞ≡Afz0ðzÞ ¼
ℏg2ðzÞ
Δt

jhrjDðzÞij2 ¼ ℏg2ðzÞ
Δt

cos2θðzÞ:

We illustrate this focusing function with subwavelength
resolution in Fig. 2(b) for a specific laser configuration.
Microscope operation.—The parameters characterizing

the microscope are the spatial resolution σ ≪ λ, the
temporal resolution τc (given essentially by the cavity
linewidth 1=κ), and the dispersive atom-cavity coupling

controlling the strength of the measurement. To be specific,
we illustrate below the operation of the microscope as
continuous observation of an atom moving in a harmonic
oscillator (HO) potential with an oscillation frequency ω
and vibrational eigenstates jni (n ¼ 0; 1;…). The generic
physical realization includes a neutral atom in an optical
trap (lattice), or an ion in a Paul trap [5], where we require a
spatial resolution better than the length scale set by the HO
ground state σ ≲ l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
with m the atomic mass.

We consider below two modes of operation. In the first,
the microscope is placed at a given z0, and we wish to
“record a movie” of the time dynamics of an atomic wave
packet (e.g., a coherent state) passing (repeatedly) through
the observation zone. This requires a time resolution better
than the oscillation period, and corresponds to the bad
cavity limit κ ≫ ω, where according to Eq. (5) the
homodyne current as a function of time mirrors directly
the wave packet motion at z0 (cf. Fig. 3 and discussion
below). As the second case, we consider the good cavity
limit κ ≪ ω. Here, the observed homodyne signal traces the
atomic dynamics at z0 cavity averaged over many oscil-
lation periods [38]. However, as we show below, in this
regime a slow scan of the focal point z0 ≡ z0ðtÞ across the
spatial region of interest will turn the microscope into an
effective QND device, which maps out the spatial density
associated with a particular energy eigenfunction of the
trapped particle with resolution σ. This will be discussed
below in the context of Figs. 1(c)–1(e), where a particle is
prepared initially in a state ρ̃ð0Þ ¼ P

npnjnihnj (e.g., a
thermal state), and in the spirit of QND measurements, a
single scan with the microscope first collapses the atomic
state into a particular motional eigenstate, and subsequently
“takes a picture” of its spatial density. This ability of a

(a) (b)

FIG. 2. Implementing the focusing function ϕz0ðzÞ. (a) The Λ
configuration jgi; jri; jei supporting a dark state with a sub-
wavelength spin structure associated with the ground states (see
text), and dispersive cavity coupling on the transition jri → jti.
(b) The Rabi frequencies, Ω1ðzÞ ¼ Ωcf1þ β − cos½kðz − z0Þ�g
(solid line), Ω0 ¼ ϵΩc (dashed line), and the (dimensionless)
focusing function fz0ðzÞ (dotted line) shown for ϵ ¼ β=2 ¼ 0.1.
For this configuration, the corresponding nonadiabatic potential
[36,37] is strongly suppressed [11].

(a)

(b)

(c)

(d)

FIG. 3. Monitoring oscillations of a coherent wave packet in a
HO (α ¼ 2) with a microscope at z0 ¼ 0 and σ ¼ 0.3l0. (a) The
ensemble-averaged hIðtÞist over the oscillation period Tosc ¼
2π=ω with increasing γ=ω ¼ 1, 2, and 4 (light to dark). Dashed
line indicates the ideal (neglecting measurement backaction)
transit signal for γ=ω ¼ 4. (b) Heating of the atom during
measurements. (c) Filtered homodyne current for γ ¼ 2ω, aver-
aged over 50 (thin) and 300 (thick) measurements. (d) SNR at the
first peak (t ¼ Tosc=4) for a single measurement and the heating
for different γτ, with τ the filter integration time (see text).
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single scan to reveal the density of energy eigenfunctions is
in contrast to the first case above, where the measurement is
inherently destructive and a good SNR is only obtained
with repeated runs of the experiment.
Bad cavity limit and time-resolved dynamics.—In

Fig. 3(a) we plot the ensemble-averaged homodyne current
hIðtÞist for a microscope positioned at z0 ¼ 0, which
monitors the periodic motion of an atomic wave packet in
the HO. The atom is initially prepared in a coherent state jαi
displaced from the trap center with jαj ≫ 1, and the micro-
scope detects the transit of the wave packet with velocity
v ¼ ffiffiffi

2
p

l0jαjω through the trap center at times t ¼ 1=4,
3=4Tosc, etc., with Tosc ¼ 2π=ω the oscillator period. The
time dependence of the homodyne current reveals the shape
of the wave packet for the given resolution σ ¼ 0.3l0.
Figure 3(a) plots hIðtÞist ¼ 2

ffiffiffi
γ

p
Trffz0ðẑÞρ̃ðtÞg for increas-

ing measurement strengths γ, with ρ̃ðtÞ≡ hρ̃cðtÞist obeying
Eq. (5). For the given parameters, Fig. 3(a) displays the
ability of the homodyne current to faithfully represent the
temporal shape of the wave packet, and reveals the meas-
urement backaction with increasing γ as a successive
distortion of the signal with time. Figure 3(b) quantifies
this backaction as an increase of the mean energy of the
oscillator with time.
The SNR associated with these measurements is shown

in Figs. 3(c) and 3(d). We define the SNR as hI τðtÞi2st=
hδI2

τðtÞist with I τðtÞ≡ R
τ Iðtþ t0Þdt0= ffiffiffi

τ
p

the homodyne
current Eq. (2) after a low-pass filter with bandwidth τ−1

and the variance hδI2
τðtÞist ≡ hI2

τðtÞist − hI τðtÞi2st. We
choose an integration time τ sufficiently long to suppress
the shot noise, but short enough to resolve the temporal
shape of the wave packet. An optimal τ is related to the
microscope spatial resolution, τ ∼ σ=v ¼ ðσ=l0Þτtr, with τtr
the transit time of the wave packet through the focal region.
In Fig. 3(c) we show the homodyne current I τðtÞ averaged
over an increasing number of measurements, and the
convergence to the results of Fig. 3(a). In Fig. 3(d) the
SNR in a single scan is plotted vs the measurement strength
γ. It shows the general behavior of non-QND measure-
ments [39]: For small γ, the SNR grows with increasing γ
due to suppression of the shot noise. For large γ, SNR
eventually drops down as the measurement backaction
induces strong additional noises.
Good cavity limit as emergent QND measurement.—A

QND measurement requires that the associated observable
commutes with the system Hamiltonian. While fz0ðẑÞ does
not commute with Ĥsyst, an effective QND measurement
emerges in the good cavity limit κ ≪ ω. We can see this by
transforming the SME Eq. (3) to an interaction picture with
respect to Ĥsyst. This transformation results in the replace-

ment fz0ðẑÞ →
P

lf̂
ðlÞ
z0 e

−ilωt, where f̂ðlÞz0 ¼ P
nfn;nþljni×

hnþ lj, with fmn ¼ hmjfz0ðẑÞjni. In a homodyne meas-
urement, where the current IðtÞ is monitored with time
resolution 1=κ, as filtered by the cavity, the terms rapidly

oscillating with frequencies lω (motional sidebands) will
not be resolved. Thus, homodyne detection provides a

continuous measurement of f̂ð0Þz0 ¼ P
nfn;njnihnj repre-

senting the emergent QND observable [10].
A formal derivation of these results is provided in

Ref. [11] starting from the SME Eq. (3). There we derive

for the homodyne current dXϕðtÞ≡ IðtÞdt ¼ 2
ffiffiffi
γ

p hf̂ð0Þz0 ic þ
dWðtÞ with h� � �ic ¼ Trf…ρ̃cðtÞg, where the conditional
density operator ρ̃cðtÞ obeys the SME,

dρ̃c ¼ −
i
ℏ
½Ĥsyst; ρ̃c�dtþ

X
l≠0

γ

1þ ð2ωl=κÞ2D½f̂ðlÞz0 �ρ̃cdt

þ γD½f̂ð0Þz0 �ρ̃cdtþ
ffiffiffi
γ

p
H½f̂ð0Þz0 �ρ̃cdWðtÞ; ð6Þ

with γ the measurement strength defined above (assuming
resonant driving). To provide a physical interpretation, we
take matrix elements of Eq. (6) in the energy eigenbases
and obtain a (nonlinear) stochastic rate equation for the
trap-state populations pn ¼ hnjρ̃cjni:

dpn ¼
γ

1þ ð2ω=κÞ2 ½A
ðþÞ
n pnþ1 þ Að−Þ

n pn−1 − Bnpn�dt

þ 2
ffiffiffi
γ

p
pn

�
fnn −

X
m

fmmpm

�
dWðtÞ: ð7Þ

Here, Að�Þ
n ≡ jfn;n�1j2, Bn ≡ AðþÞ

n þ Að−Þ
n , and for simplic-

ity we have kept only the dominant terms l ¼ 0;�1 for
κ=ω ≪ 1. We emphasize that Eq. (7) involves two time-
scales. The stochastic term in the second line describes
the collapse of the density operator to a particular trap
eigenstate ρ̃cðtÞ → jnihnj within a collapse time
Tcoll ∼ 1=γ. In contrast, the first line is a redistribution of
population between the trap levels, for a much longer dwell
time, Tdwell ∼ ð2ω=κÞ2γ−1 ≫ Tcoll. As a result, the time
evolution consists of a rapid collapse to an energy

(a) (b)

FIG. 4. Single-run scans in the QND regime. (a) SNR vs γT for
a scan of an atom initialized in the state j1i of a HO for κ=ω ¼ 10,
1, 0.25, 0.1 (light to dark), compared to an ideal QND
measurement (dashed line) for σ ¼ 0.3l0 and L ¼ 8l0. SNR
is taken at z0ðtÞ ¼ −l0 (theoretical maximum). (b) Scan of
Friedel oscillations for N ¼ 16 noninteracting fermions in a box
of length L due to an impurity at z ¼ 0: the scanning signal (solid
line), the total noise variance (shaded area), and the theoretical
density profile nðzÞ ¼ nF½1 − sinð2kFzÞ=ð2kFzÞ� (dashed line),
with nF ¼ kF=π ¼ N=L.
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eigenstate jni, followed by a sequence of rare quantum
jumps n → n� 1 on the timescale Tdwell. The QND mode
of the microscope exploits these two timescales by scan-
ning the focal point across the system, −L=2 < z0ðtÞ <
L=2, in a time Tcoll ≪ T ≲ Tdwell. Starting the measurement
scan, the motional state will first collapse to a particular
state jni, with the subsequent scan revealing the spatial

density profile hnjf̂ð0Þz0 jni ¼
R
dzfz0ðzÞjhzjnij2.

Figure 1(c) shows a simulation representing a single run in
the QND regime (κ=ω ¼ 0.1) based on integrating the SME
Eq. (6). The atom at t ¼ 0 is prepared in a thermal motional
state of the HO, ρ̃ð0Þ ¼ P

npnjnihnj, with nth ¼ 0.6. We
perform three consecutive spatial scans covering −L=2 <
z0ðtÞ < L=2 (L ¼ 10l0), each in a time interval T
(γT ¼ 5000). For the run shown in Figs. 1(c)–1(e), the
QND measurement in scan 1 first projects the atomic trap
population into j0i, followed by a transition to j1i at time t1,
and j1i → j0i at t2 in scan 2, and no transition in scan 3. The
homodyne current I τðtÞ associated with these single scans is
a faithful representation of the spatial density distributions of
eigenfunctions jhzjnij2. In Fig. 4(a) the SNR of single scans
of a pure state is shown against the (dimensionless) meas-
urement strength γT. By decreasing κ=ωwe greatly suppress
the measurement backaction, rendering them into rarer
quantum jumps, thus improving the SNR.
The concept of a scanning microscope to observe in vivo

cold atom dynamics is readily adapted to a quantum many-
body system, and we show in Fig. 4(b) a single spatial scan
of the Friedel oscillation of a noninteracting Fermi sea in
the presence of a single impurity [11]. While we have
focused on homodyne measurement in CQED for continu-
ous readout (with experimental feasibility discussed in
Ref. [11]), atomic physics setups provide interesting alter-
native routes to achieve weak continuous measurement,
e.g., coupling to atomic ensembles via Rydberg interactions
[40–42].
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