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Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the
instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear
optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the
generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of
transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated
OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case,
but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization
OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities,
noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and
show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses.
The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter
interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical
attosecond pulses with a tunable ellipticity.
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Introduction.—Optical chirality (OC), a quantity that
measures the local and instantaneous density of chirality of
electromagnetic (EM) waves, is a very useful concept in
light-matter interactions [1,2]. For example, it has been
used for proposing “superchiral” fields (i.e., fields with a
larger OC than circularly polarized fields) that yield ultra-
dichroic interactions with chiral molecules [3,4]. However,
OC has not yet been applied to chiral nonlinear optical
processes. The reported results follow our motivation to
explore the role of OC in the generation of helically
polarized high harmonics.
In high harmonic generation (HHG) [5–7], intense

ultrashort laser pulses are spectrally upconverted to the
extreme UV and x-ray spectral regions. The process has
been utilized for various applications, including the pro-
duction of attosecond pulses [8], high resolution imaging
[9–11], and probing the dynamics of electronic wave
functions [12]. In HHG, electrons are first tunnel ionized,
and are then accelerated by the intense laser field until they
recombine with the ion and emit high harmonic radiation
[6]. The trajectories of the recombining electrons can
generally have durations on the same order of magnitude
as that of the optical cycle of the driver, making this process
noninstantaneous. In the “standard” geometry, HHG is
driven by, and results with, linearly polarized light (i.e.,
with zero OC). Recently, generation and applications of
highly helically polarized bright high harmonics were
demonstrated experimentally [13–21]. Also, HHG from
chiral media was shown to be chirality sensitive [22–24].
Given these exciting developments, it is pertinent to apply
the concept of OC to HHG. For example, identifying

correspondences between the OCs of the pump and high
harmonic fields should lead to improved understanding and
control of chiral HHG and attosecond pulses [25–30].
Here, we first divide the OC of transversal and paraxial

beams to polarization and orbital terms, i.e., contributions
from spin angular momentum (SAM) and orbital angular
momentum (OAM). For the casewhere the polarization term
is dominant, we develop a formalism for noninstantaneous
OC and apply it for analyzing helical HHG.We discover that
the chirality of HHG emission driven by a multispectral
pump corresponds to a time-scale-weighted OC of the
pump, which is comprised of both instantaneous and non-
instantaneous chiralities. Stimulated by the new formalism,
we propose a tricircular laser field that exhibits the required
dynamical symmetry for generation of circularly polarized
high harmonics (just like the bicircular field), and simulta-
neously it is unidirectionally chiral at all time scales
(denoted a unichiral field). We show that such a field can
produce chiral attosecond pulses, even from completely
isotropic media, like helium gas. Furthermore, we show that
the polarization and chirality of the attosecond pulses can be
controlled by varying the time-scale-weighted OC of the
tricircular fields. Lastly, we identify that OC is a robust
quantity for estimating the circularity of few cycle pulses,
where standard definitions such as ellipticity are ambiguous.
Polarization and orbital optical chirality.—The OC of

an EM field in vacuum is given by [2]

C ¼ ε0
2
E⃗ · ∇⃗ × E⃗þ 1

2μ0
B⃗ · ∇⃗ × B⃗; ð1Þ
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where we use MKS. We first derive the polarization related
terms in C for transversal and paraxial EM beams, denoted
Cp. Mathematically, we neglect the z component and
transverse derivatives of the EM field in Eq. (1), which
yields

Cp ¼ ε0
2
ðEy∂zEx − Ex∂zEyÞ þ

1

2μ0
ðBy∂zBx − Bx∂zByÞ:

ð2Þ
Assuming the pulses have a slowly varying envelope

(SVE) along the z axis, we replace the z derivatives by time
derivatives, yielding,

Cp ¼
ε0
2c0

ðEy∂tEx −Ex∂tEyÞ þ
1

2c0μ0
ðBy∂tBx −Bx∂tByÞ;

ð3Þ

where c0 is the speed of light in vacuum. Direct algebraic
manipulation (see Appendix A) leads to

Cp ¼ ε0
2c0

jE⃗j2∂tϕðtÞ þ
1

2c0μ0
jB⃗j2∂t

�
ϕðtÞ þ π

2

�
; ð4Þ

where ϕ ¼ tan−1ðEy=ExÞ is the angle of the electric field
vector (the magnetic field vector is rotated by π=2).
Labeling ϕ’ðtÞ as the time derivative of ϕ, and I ¼
ðc0ε0=2ÞjE⃗j2 þ ðc0=2μ0ÞjB⃗j2 the light intensity, Eq. (4)
gets a compact and intuitive form:

Cp ¼ 1

c02
ϕ0ðtÞIðtÞ: ð5Þ

That is, the polarization-associated OC of paraxial beams
corresponds to the product of the field’s rotational velocity
weighted by its intensity. This definition is an instantaneous
measure for the chirality since both ϕ’ðtÞ and IðtÞ are
evaluated at time t. Notably, OC is a dimensionful quantity
that depends on the pulse envelope and frequency. Here we
normalize polarization-associated OC to give a dimension-
less quantity with respect to a circularly polarized pulse of a
similar envelope and carrier frequency, such that for
monochromatic waves, the instantaneous chirality coin-
cides with the definition of ellipticity. For example, for an
EM field with a fundamental frequency ω, a dimensionless
envelope function AðtÞ, and a maximal amplitude E0, the
normalized polarization term of the OC is

Cp
norm ¼ ϕ0ðtÞIðtÞ

c0ε0jE0j2ω 1
τ

R
τ
0 jAðtÞj2dt

; ð6Þ

where τ is the length of the pulse, and in the CW case the
integral in the denominator vanishes to unity.
For completeness, we also derive the orbital term of the

OC, denoted Cl. Starting with Eq. (1), assuming a beam
with a SVE and neglecting the Cp term leads to

Cl ¼
ε0
2
ðEx∂yEz − Ez∂yEx þ Ez∂xEy − Ey∂xEzÞþ

1
2μ0

ðBx∂yBz − Bz∂yBx þ Bz∂xBy − By∂xBzÞ
: ð7Þ

An algebraic manipulation [similar to the one leading to
Eq. (4)] leads to

Cl ¼
1

c0
ðIxz∂yϕxz − Iyz∂xϕyzÞ; ð8Þ

where we have defined planar EM field intensities Iiz ¼
ðc0ε0=2ÞðjEij2 þ jEzj2Þ þ ðc0=2μ0ÞðjBij2 þ jBzj2Þ and pla-
nar angles ϕiz¼ tan−1ðEz=EiÞ, and “i” is the index for x or y
axes. Employing the beam’s paraxiality, Cl is well approxi-
mated by

Cl ¼
1

c0

�
Ix∂y

�
Ez

Ex

�
− Iy∂x

�
Ez

Ey

��
: ð9Þ

Equation (9) clearly represents the orbital contribution to
OC, as it is nonzero for linearly polarized fields, and
measures the spatial rotation of the field in the trans-
verse plane.
We are motivated to explore the generation of helically

polarized HHG and therefore consider below only the
polarization term of the OC. Thus, the index “p” is dropped
henceforth, and any reference to OC relates to the polari-
zation-associated term.
Optical chirality in HHG.—First, we explore HHG

driven by quasimonochromatic elliptically polarized pumps
[31,32], with an ellipticity ε. The HHG calculations
(performed within the dipole approximation) are detailed
in Appendix B. As shown in Fig. 1, the OC of the high
harmonic field corresponds well to the OC of the driving
laser, even though HHG is a highly nonlinear process [33].

FIG. 1. Correlation of instantaneous OC of the driving mono-
chromatic elliptical pump (which in this case is identically
its ellipticity, ε) with numerically calculated time-averaged
chirality of the emitted radiation, for Imax ¼ 3 × 1014 W=cm2,
λ ¼ 800 nm. Bottom shows the parametric Lissajou curve of the
driver as the ellipticity is increased.
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Next, we consider HHG driven by ω-2ω bicircular fields
with equal amplitudes [13,14,18–21,34–36]. In this case,
the OC of the pump varies from 0 to 0.5, and its average is
hCpumpi ¼ 0.25 [see Figs. 2(a) and 2(b)]. The emitted
attopulses, on the other hand, are generally not helical
[30,37,38]; i.e., their OC is approximately zero. This
discrepancy is not a surprise since HHG is a nonlinear
noninstantaneous process; hence, it is not guaranteed that
there is any correspondence between the (instantaneous)
OC of the pump and HHG field. Still, motivated to correlate
the OC of the HHG field with the pump chirality, we
propose quantities that describe the non-instantaneous OC
(the inherent duration of HHG corresponds to the time
interval of the electron’s motion in the continuum, which is
typically in the range of ¼–¾ of the duration of the pump’s
optical cycle).
Noninstantaneous optical chirality—To include nonin-

stantaneous effects for a given time scale, we alter Eq. (5) to

χðt;ΔtÞ ¼ 1

c02
ϕðtþ ΔtÞ − ϕðtÞ

Δt
Īðt;ΔtÞ; ð10Þ

where Īðt;ΔtÞ ¼ 0.5½IðtÞ þ Iðtþ ΔtÞ�. Equation (10)
introduces chirality by time scale χðt;ΔtÞ and reduces to
Eq. (5) for Δt ¼ 0. Furthermore, we propose a time-scale-
weighted OC, χtotðtÞ, for analyzing processes with multiple
time scales:

χtotðtÞ ¼
ZΔtcutoff
Δt¼0

wΔtχðt;ΔtÞdðΔtÞ; ð11Þ

where wΔt is a weighting coefficient indicating the con-
tribution of the time scale Δt to the overall chirality, and
Δtcutoff is a cutoff for the time scales. It may be possible to

derive the weighting and cutoff coefficients in Eq. (11)
from models describing the specific nonlinear process.
Here, we take a simplified approach and assume that the
two dominant time scales are Δt ¼ 0 and another Δt that
(i) reflects the time scale of the nonlinear process (e.g.,
duration of the re-colliding electron trajectory in HHG),
and (ii) corresponds to the duration of the dynamical
symmetry of the driving pulse [i.e., the chirality by time
scale, χðt;ΔtÞ, gets strong maxima in these delays].
Noninstantaneous optical chirality in HHG.—We now

employ the noninstantaneous chirality formalism to ana-
lyze the generation of helical attopulses driven by multi-
spectral pumps.
First, we explore a counterrotating ω-2ω bicircular pump

E⃗biðtÞ ¼ E1êReiωt þ E2êLe2iωt; ð12Þ

where êR=L represents a right-left circularly polarized field
vector, ω is the optical frequency related to the field’s
period, T ¼ 2π=ω, and E1;2 are the field amplitudes.
Because of its threefold rotational symmetry, this field
generates circular high harmonics with an alternating
helicity [13,14,39]. Even though the bicircular driver
produces circular harmonics, it often leads to an overall
nonchiral response, and linearly polarized attopulses
[30,37,38]. Applying Eq. (10) on the bicircular field at
intensity ratios E1 ¼ E2 (1∶1), we find hχðt;Δt ¼ 0Þi ¼
0.25 and hχðt;Δt ¼ T=3Þi ¼ −0.5. That is, the bicircular
field at this intensity ratio changes its helicity from shorter
to longer time scales, which influences the HHG process.
The resulting nonchiral response can then be intuitively
understood as two opposing chiral time scales that average
out during the electron’s motion in the continuum. This
argument suggests that in order to produce a significant
chiral response in the medium, the driver should be
corotating on these time scales (thus eliminating the
opposing contributions to the chirality); hence, the driver
should be unidirectional at all time scales [i.e., χðt;ΔtÞ > 0
for all t;Δt], denoted “unichiral.” One can generate such a
field without breaking the discrete threefold dynamical
symmetry by adding a third circular field at frequency 4ω to
the bicircular scheme, which we denote the tricircular
scheme:

E⃗triðtÞ ¼ E1êReiωt þ E2êLe2iωt þ E4êRe4iωt: ð13Þ

For E4 ¼ 0 the pump in Eq. (13) reduces to the bicircular
pump. The addition of a 4th harmonic term tilts the balance
of helicity in favor of anticlockwise rotation. Tuning the
intensity ratios in Eq. (13) (E1∶E2∶E4) allows manipulat-
ing the OC on multiple time scales. For comparison, at
intensity ratios 2∶1∶1, the tricircular field has a very similar
shape to the bicircular field at intensity ratios 1∶1, but is
unichiral, and rotates anticlockwise on all time scales
[Figs. 2(a) and 2(c)].

FIG. 2. Optical chirality of bicircular and tricircular fields, at
intensity ratios 1∶1 and 2∶1∶1, respectively. (a) Lissajou of the
bicircular (purple) and tricircular (green) fields. Full arrows
represent the instantaneous motion of the field, dashed arrows
represent motion on T=3 time scales. The instantaneous and long
motions are unidirectional for the tricircular field while they have
opposite directions in the bicircular fields. (b) Instantaneous and
non-instantaneous (for Δt ¼ T=3) optical chiralities of bicircular
pump. (c) Same as (b), but for tricircular pump, where CtriðtÞ and
χtriðt;Δt ¼ T=3Þ coincide.
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We numerically show that this configuration generates a
chiral response from an isotropic medium on a single atom
level from an initial 1s state (see Appendix B for numerical
details). Filtering out below ionization potential (Ip) har-
monics yields a highly helical attopulse train [Fig. 3(b)]
with an averaged OC of 0.64 (equivalent to an ellipticity of
0.66), as opposed to the bicircular field that generates a
linearly polarized attopulse train with an averaged OC of
0.08 [Fig. 3(a)]. From a spectral point of view, even though
the tricircular driver generates both left and right circular
harmonics, the intensity of each right rotating harmonic is
about 5 times larger than that of the nearby left rotating
harmonic. The main difference between the driving fields is
the long-term rotation directionality, indicating that the
noninstantaneous chirality of the pump leads to the drastic
change in the emitted radiation’s chirality. The drawbacks
for adding the 4ω field are reductions in cutoff energy and
conversion efficiency (by 1 order of magnitude), which is
consistent with the Coriolis force model [40,41] for HHG
driven by bichromatic corotating pulses.
Next, we investigate a wider range of intensity ratios in

the tricircular scheme and examine the correspondence
between the chirality of light emitted from HHG to the
chirality of the driver. We define a parameter η which is
varied from 0 to 1 as the tricircular field changes its
intensity ratios from 1∶1∶0, to 2∶1∶1. The pump then has
the form

E⃗tri;ηðtÞ ¼ E0;η½ð1þ ηÞêReiωt þ êLe2iωt þ ηêRe4iωt�; ð14Þ
where E0;η is normalized per η to keep the peak amplitude
constant. The spatiotemporal shape of this field is shown
for several values of η in the bottom of Fig. 4. For each

value of η we calculate the OC of the emitted radiation.
Figure 4 clearly shows that varying the intensity ratios in
the driver tunes the chirality of the emitted light. As
discussed above, the instantaneous OC of the pump
generally does not correspond to the instantaneous OC
of the high harmonic waves. For example, for η ¼ 0.3 the
time-averaged OC of the driver is hCpumpi ¼ 0, while the
emitted light is chiral (hCHHGi > 0). Also, for η ¼ 0.2,
the OC of the driver is negative (hCpumpi < 0), while that
of the emitted light is positive (hCHHGi > 0). We approxi-
mate the time-scale-weighted optical chirality of the
driver with Eq. (11) as comprised from just two time scales,
Δt ¼ 0 and Δt ¼ T=3:

hχtoti ≈ w0hχðt; 0Þi þ wT=3hχðt; T=3Þi: ð15Þ
We search for a correspondence between the time-scale-

weighted OC of the pump to the instantaneous OC of the
HHG field to derive the weighting coefficients. A best fit is
found for w0 ¼ 2.14wT=3, with R2 ¼ 0.993 (Fig. 4), from
which we can gain some physical intuition on the system at
hand: in tricircular HHG the instantaneous time scale is
more significant than the T=3 time scale. Similar results are
also obtained for a fourfold symmetric tricircular pump
with frequencies ω-3ω-5ω, where the T=4 time scale plays
a significant role (see Appendix C).
We also applied the OC approach for investigating

attopulses generated by the bicircular scheme with varying
amplitude ratios. This scheme was proposed and imple-
mented experimentally to produce highly chiral overall
HHG spectra [30], which should also correspond to atto-
second pulses with large ellipticity (the first experimental
highly chiral overall HHG spectra using bicircular pumps

FIG. 3. Numerical HHG spectral intensity projected onto left
and right rotating components in log scale (top) and emitted
attopulse trains (bottom) from (a) bicircular ω-2ω driver with
intensity ratios 1∶1, Imax ¼ 2 × 1014 W=cm2, λ ¼ 800 nm,
(b) unichiral tricircular ω-2ω-4ω driver with intensity ratios
2∶1∶1, Imax ¼ 3 × 1014 W=cm2, λ ¼ 1600 nm. Top inset shows
a Lissajou curve of the driver, and bottom inset a Lissajou curve
of a single burst of the emitted attopulse train.

FIG. 4. Correspondence between time-averaged noninstanta-
neous OC of the driving tricircular pump to the numerically
calculated time-averaged OC of the emitted radiation, for
Imax ¼ 3 × 1014 W=cm2, λ ¼ 1600 nm. Bottom shows the para-
metric Lissajou curve of the driver as η is varied. The best fit
using two time scales is obtained for w0 ¼ 2.14wT=3, with an
R2 ¼ 0.993 between the green and red curves.
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was reported in Ref. [20]). In Ref. [30], the intensity ratios in
the counterrotating bicircular field were tuned such that
Iω > I2ω, which results in highly chiral attopulses. A
symmetric manipulation of I2ω > Iω leads to less chiral
attopulses. The noninstantaneous OC theory elucidates
that this occurs because for Iω > I2ω one produces a
unichiral pump, while for I2ω > Iω the pump’s instanta-
neous chirality is increased but remains opposite to its
noninstantaneous chirality, resulting in a reduced chiral
response (Fig. 5).
Interestingly, oscillations in the OC of emitted attopulses

in Figs. 4 and 5 appear when the instantaneous and
noninstantaneous chiralities of the pump are oppositely
signed (the oscillations are larger in Fig. 5 because the
difference between the instantaneous and noninstantaneous
chiralities is larger). In this regime, the HHG field’s
chirality deviates from the approximated behavior of just
two time-averaged chiral time scales.
Lastly, we note that a time-averaged OC (hCi) provides a

robust and effective quantity for estimating an EM field’s
degree of circularity, where standard definitions such as
ellipticity can be ambiguous. Ellipticity becomes ambigu-
ous if pulses are comprised of broadband spectra (such as in
HHG), and the spatiotemporal profile of the pulse no longer
resembles an ellipse. For instance, using stokes parameters
[42] to calculate the “ellipticity” of anω-2ω counterrotating
bicircular field (at amplitude ratios 1∶1) results in an
ellipticity ε ¼ 1, even though the field is clearly not “as
circular” as circularly polarized light. Using OC gives a
more realistic estimate of hCi ¼ 0.25, i.e., still circular, but
less than circularly polarized light. This issue naturally also
occurs in more complex wave forms that are comprised of
multiple high harmonics; thus, we propose using the
averaged OC to evaluate the circularity in these cases.

Summary.—We presented a noninstantaneous optical
chirality theory, and used it to analyze multi-chromatic
helical HHG. We first divided the OC of transverse and
paraxial beams to polarization and orbital terms, and then
extended polarization-associated OC to include noninstan-
taneous contributions. Our results show that the chirality of
the emitted HHG field corresponds to both the instanta-
neous and noninstantaneous chiralities of the pump.We use
this intuition to predict unichiral tricircular field configu-
rations that are unidirectionally helical, and can drive
highly helical attopulse trains from an isotropic medium.
Moreover, the attopulses’ polarization state can be con-
trolled by tuning the time-scale-weighted chirality of the
pump. Lastly, we recommended the use of averaged OC to
evaluate the circularity of broadband ultrashort pulses.
This work paves the way to various new research direc-

tions. First, application of OC in other nonlinear optical
processes may yield new insights. Second, the separation of
OC to polarization (SAM) and orbital (OAM) terms allows
investigating regimes where the terms are of similar magni-
tude andmight interact, or convert fromone to another,which
may be applicable to HHG driven by beams carrying OAM
[43]. Third, it will be interesting to apply the OC approach to
HHG from anisotropic and chiral media (e.g., molecular gas
[41] and solids [44]). For example, we expect that the use of
uni-chiral fields in HHG would lead to enhanced selectivity
of chiral HHG spectroscopy [22,23]. Four, OC theory is also
applicable to strong-field ionization of atoms and molecules,
and could be useful for producing and controlling electron
vortices, rotational electron currents, and spin-polarized
electrons [45–48]. Lastly, noninstantaneous OC and uni-
chiral fields should prove useful for the production of intense
ultrashort magnetic field pulses [49].
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APPENDIX A: TRANSITION FROM
EQ. (3) TO EQ. (4)

The transition from Eq. (3) to Eq. (4) uses the following
identity, both on the electric and magnetic fields:

ðFy∂tFx − Fx∂tFyÞ

¼ ðFx
2 þ Fy

2Þ 1

1þ ðFy

Fx
Þ2
ðFy∂tFx − Fx∂tFyÞ

Fx
2

≡ ðFx
2 þ Fy

2Þ ∂∂t
�
tan−1

�
Fy

Fx

��
; ðA1Þ

where F⃗ is a time-dependent vector.

FIG. 5. Same as in Fig. 4, but for a bicircular pump [Eq. (12)]
with varying amplitude ratios between its first and second
harmonic, for Imax ¼ 2.5 × 1014 W=cm2, λ ¼ 800 nm. OC is
calculated for emitted attopulses (below Ip harmonics are
filtered out).
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APPENDIX B: HHG NUMERICAL DETAILS

Numerical calculations of the high harmonic spectrum
were performed by solving the time-dependent 2D
Schrödinger equation in the length gauge, within the single
active electron approximation, and the dipole approxima-
tion. The system’s time-dependent Hamiltonian is given in
atomic units by

ℋðtÞ ¼
�
− 1

2
∇⃗2 þ Vatomðr⃗Þ þ r⃗ · E⃗pulseðtÞ

�
; ðB1Þ

where Vatom represents a spherically symmetric coulomb
softened atomic potential well, set to describe the ionization
potential of Ne (Ip ¼ 0.793 a:u:) [27],

Vatomðr⃗Þ ¼ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⃗2 þ 0.1195

p ; ðB2Þ

E⃗pulseðtÞ is the electric field of the pump pulse, defined by
the electric field of monochromatic elliptical, or multi-
chromatic pumps as specified in the main text, respectively,
times a flattop envelope function with a 4 fundamental
cycle long rise and drop sections and a 6 cycle long flattop.
The initial wave function was chosen as the atomic 1s
ground state found by complex time propagation. The
Schrödinger equation was discretized on a square real-
space grid of size L × L for L ¼ 120 a:u:, with spacing
dx ¼ dy ¼ 0.2348 a:u:, and propagated with a 3rd order
split operator method [50,51] with a time step dt ¼
0.01 a:u: Convergence was tested with respect to grid size,
density, and time step. Absorbing boundaries were used
with the absorber set to (in a.u.),

Vabðr⃗Þ ¼ −i5 × 10−4Θððjr⃗j − 36Þ3Þ; ðB3Þ

where Θ represents a Heaviside step function. The dipole
acceleration was calculated using the Ehrenfest theorem
[52], from which the harmonic spectrum is found by
Fourier transform. The OC of the HHG field is calculated
after removing the fundamental harmonics in the spectrum,
and is normalized with respect to the OC of the most chiral
attopulse train emitted from the given geometry (after
filtering out below Ip harmonics).

APPENDIX C: FOURFOLD
TRICIRCULAR PUMPS

This appendix presents a similar analysis as that in the
text for tricircular ω-2ω-4ω pumps, but for a fourfold
symmetric tricircular field comprised of the ω-3ω-5ω
frequencies. This arrangement allows manipulating the
chirality of the pump by tuning the intensity ratios between
the different colors without breaking the fourfold sym-
metry. We define the same parameter ηwhich is varied from
0 to 1, and the pump field varies as follows:

E⃗fourfold
tri;η ¼E0;η½ð1þ ηÞêReiωtþ êLe3iωtþ ηêRe5iωt�: ðC1Þ

The results are seen in Fig. 6, which shows a correspon-
dence between the HHG field’s instantaneous OC and both
instantaneous and noninstantaneous contributions to the
chirality, dominated by the T=4 time scale.
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