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We show that the excitation probability of a state within a manifold of levels undergoes Rabi oscillations
with the frequency determined by the energy difference between the states and not by the pulse area, for
sufficiently strong pulses. The population and coherence remains in the two-level subsystem formed by the
initial and target state even at Rabi frequencies exceeding the energy difference. The observed dynamics
can be useful in nonlinear spectroscopy and quantum state preparation.
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Coherent excitation is a fundamental step for quantum
state preparation, underlying a variety of implementations
in quantum information and quantum control of atoms,
molecules, and nanodevices. In general, quantum systems
have complex structures; however, under certain condi-
tions, their dynamics can be well described by just a few
separated energy levels [1–3]. In this regard, the two-level
structure (TLS) represents a particularly simple and well-
adapted system to represent a qubit or to describe elemen-
tary control processes [4,5].
In some cases, dressing a quantum system in slowly

changing fields allows us to use the adiabatic representation
and reduces the complicated multilevel dimensionality to
just one or a few dressed states [6–8]. This is the case of the
stimulated Raman adiabatic passage (STIRAP) [9], its
generalizations for N-level systems with more complex
structures [6,7,10], and molecular wave packets [11,12].
Adiabatic control methods have also found interesting
applications in quantum gate design [13] and control of
entanglement [14–16]. It is instructive to note a recent
discussion regarding the important role of the nonadiabatic
couplings in STIRAP [17] and other control techniques,
such as coherent destruction of tunneling [18].
Here, we report unexpected results found during a

reexamination of the pulse area theorem [1,19,20] in
TLS and multilevel systems, where the additional off-
resonant levels do not participate, in principle, in the
population transfer. Under a constant field of amplitude
ϵ0 and frequency ω, slightly detuned from the resonance, so
that Δ ¼ E2 − E1 − ℏω, the excitation probability of the
TLS undergoes Rabi oscillations

P2ðtÞ ¼
Ω2

0

Ω2
eff

sin2 ðΩefft=2Þ; ð1Þ

where Ω0 ¼ μϵ0 is the Rabi frequency (in atomic units),
and the effective Rabi frequency Ωeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

0 þ Δ2
p

takes
into account the effect of the detuning. The detuning
accelerates the rate of the population transfer but decreases
the maximum that can reach the target state, hampering the
efficiency and robustness of the preparation process. A
general feature of detuning is to generate fast oscillating
dynamical phases that modulate (and reduce) the coherent
transfer induced by the Rabi frequency.
Logically, we may expect that increasing the system

complexity will make it more difficult to control the
population dynamics, since more states will be involved
and more effective detunings will modulate the Rabi
oscillations. Indeed, one of the main problems of building
quantum machines (e.g., quantum computers) is the ability
to first isolate TLS and then couple these structures in a
controllable way. In this Letter, however, we show that
there are very general classes of structures, more complex
than the TLS, where the additional states help to enhance
the robustness of the population transfer. It turns out that, in
the presence of a driving field, the system dressed states are
characterized by isolating a “two-level dressed substruc-
ture" (TLDS) where the dynamics occurs. Assuming
constant fields for simplicity, the effective Rabi frequency
driving the population dynamics within these two dressed
states is of the form

Ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aδ2 þ bΩ2

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2δ4 þ b2Ω2

0 þ cδ2Ω2
0

qr
; ð2Þ

where δ is a characteristic energy splitting of the system,
and a, b, c are some relevant parameters. Whereas the
dynamics of the ordinary TLS is governed by the largest
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system frequency (the Rabi frequency or the detuning), in
the TLDS, the behavior is just the opposite; the driving
force is always the slowest system frequency, given Ω0 at
low field intensities, and by δ, at large intensities. This self-
regulated behavior makes these systems promising candi-
dates from which to build quantum machines, owing to the
greater robustness of their coherent population dynamics.
Note that, in this case, the speed of quantum operations
(gates) is constrained by the energy splitting of the system
and not by the strength of the external drive. We will refer
to the oscillations induced by the effective Rabi frequency
of the form of Eq. (2) or its time-dependent generalizations
as anomalous Rabi oscillations (AROs).
Although AROs occur in very general scenarios, we first

focus on highly symmetrical systems where analytical
solutions can be found. Let us consider a four-level tripod
system composed of three nondegenerate levels in the
ground state coupled to a single excited state. A possible
experimental realization could be the excitation from a
J ¼ 1 atomic state to an excited J ¼ 0 state by the
fields of a suitable polarization to allow all the couplings.

In particular, a field with elliptical polarization E⃗ðtÞ ¼
E0ðtÞðk̂ − i

ffiffiffi
2

p
ĵÞ= ffiffiffi

3
p

(where ĵ, k̂ are unit vectors along y, z,
and E0ðtÞ is the pulse envelope) guarantees that all
couplings are of equal magnitude. In fact, since the
ARO does not depend on the sign of the Rabi frequencies,
different field polarizations obtained from a superposition
of two orthogonal electric fields of different amplitude can
be used. A very specific arrangement is only needed to
reproduce the conditions of the analytic Hamiltonian. The
degeneracy of the ground sublevels can be lifted by a strong
magnetic field directed along the z axis that creates Zeeman
splittings δ ¼ gμBB, where g is the Landé factor, μB is the
Bohr magneton, and B is the magnetic field. Here we are
interested in the regime where the splittings are larger than
the pulse bandwidth and we assume that any Zeeman
sublevel of the ground state can be initially prepared. A
similar behavior occurs when J ¼ 0 is the initial state and
J ¼ 1 is the final state.
Expanding the wave function as jΨðtÞi ¼P
1
M¼−1 aMðtÞjMi þ a00 ðtÞj00i, where M is the magnetic

quantum number in the ground state and the prime indicates
the excited state, and applying the rotating wave approxi-
mation (RWA) in the field interaction representation, the
Hamiltonian can be written as

H ¼
X
M

δMjMihMj þ Δj00ih00j −ΩðtÞ=2

×

�X
M

jMih00j þ H:c:

�
; ð3Þ

whereΔ ¼ E00 − ℏω is the single-photon detuning, ω is the
carrier frequency, ΩðtÞ ¼ Ω0 expf−ðt − tcÞ2=ð2τ20Þg, Ω0 is
the peak Rabi frequency, τ0 determines the pulse duration,

and H.c. refers to the Hermitian conjugate components.
Choosing Δ ¼ δM, we can resonantly excite the j00i state
from any initial sublevel. Starting in the j0i sublevel, we
obtain the most symmetrical arrangement when Δ ¼ 0.
Figure 1 shows a sketch of the system, including the
couplings for the symmetrical arrangement (a) as well as
one possible asymmetric configuration (b), where Δ ¼ −δ.
In the figure, we also present the time-dependent energies
of the system dressed states for both configurations.
In the adiabatic limit, the dynamics of the system in the

symmetric configuration can be described analytically. By
diagonalizing the Hamiltonian, Eq. (3), we obtain the
time-dependent energies of the dressed states λ1;2ðtÞ ¼
∓ ffiffiffiffiffiffiffiffiffiffiffi

Λ−=2
p

, λ3;4ðtÞ ¼∓ ffiffiffiffiffiffiffiffiffiffiffi
Λþ=2

p
, with Λ∓¼δ2þ3χ2∓D2,

where D2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ4 þ 2χ2ðtÞδ2 þ 9χ4ðtÞ

p
, χðtÞ ¼ ΩðtÞ=2.

From these expressions, we see two limiting cases: for
the weak fields, when Ω0 ≪ δ, λ1;2ðtÞ ¼∓ χðtÞ, while for
large pulse intensities, Ω0 ≫ δ, λ1;2ðtÞ ¼∓ δ=

ffiffiffi
3

p
. We also

observe that the dressed states come in pairs: the distance
between λ1ðtÞ and λ2ðtÞ is approximately bounded by the
energy splitting due to avoided crossings with the other
dressed states, and it remains small regardless of the pulse
amplitude, while the distance between λ3ðtÞ and λ4ðtÞ
increases following the Rabi frequency ΩðtÞ.
For the initial condition a0ð0Þ ¼ 1, the wave function at

the end of the pulse depends only on the amplitudes a0
and a00 . Neglecting nonadiabatic couplings, the analytic
solution of the time-dependent Schrödinger equation
(TDSE) is

a0ðtÞ ¼
2χ2ðtÞ

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − δ2 − χ2ðtÞ

p cos

�Z
t

0

λ2ðt0Þdt0
�
; ð4Þ

a00 ðtÞ ¼
2iδχðtÞ

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − δ2 þ 3χ2ðtÞ

p sin

�Z
t

0

λ2ðt0Þdt0
�
: ð5Þ
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FIG. 1. Tripod system in symmetric (a) and asymmetric (c)
configurations and their respective dressed states (b) and (d);
tc ¼ 5τ0, δτ0 ¼ 5, Ω0τ0 ¼ 18. The thicker blue and red lines
correspond to the populated dressed states.
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At the end of the pulse (t ¼ T), the target state popula-
tion follows the area theorem P ¼ sin2ðA=2Þ with a
generalized area A ¼ 2

R
T
0 dtλ2ðtÞ. While for small pulse

intensities (Ω0 ≪ δ), A ≈
R
T
0 dtΩðtÞ ¼ S0, it asymptoti-

cally approaches a constant value at large intensities. A
coherent saturation effect makes the yield of population
transfer much more robust as the field intensity increases,
contrary to the standard TLS result [1]. In practice, this
leads to very slow oscillations in the final state, which are
controlled by the Zeeman splitting δ.
Figure 2(a) compares the final yield as a function of S0

in the adiabatic limit (analytic results) with the result of
numerical integration of the TDSE. We have used Gaussian
pulses with δτ0 ¼ 5. The agreement of the results shows
that the nonadiabatic couplings are negligible untilΩ0 ≪ δ,
when the states j � 1i also become populated at the final
time. Surprisingly, in the TLDS, the adiabaticity is dam-
aged at large pulse intensities, in contrast to the commonly
accepted adiabatic criterion [6,7].
Figure 2(b) shows a density plot of the final yield of

population transfer as a function of both S0 and δ,
calculated numerically. For not very large Rabi frequencies,
the final-time population oscillates between the initial and
the target state as it is in the traditional TLS. The states
j � 1i are only populated due to nonadiabatic couplings,
leading first to some higher-frequency modulation or
wiggles of the ARO and lower yields, and then to some
enlargement of the oscillation period since part of the pulse
energy is used to excite other Zeeman levels via Raman
transitions. These effects are due to some population
transfer near the crossings of λ1;2ðtÞ with λ3;4ðtÞ, when
ΩðtÞ ≈ δ at the beginning and end of the pulse. Hence, the

nonadiabatic effects are less important the larger the energy
splitting is.
The presence of the ARO requires the isolation of a

TLDS, which depends on the linking patterns of the
system. For instance, if we choose to start in the j � 1i
levels, fixing the detuning accordingly (Δ ¼ �δ), as shown
in Fig. 1(b), then we observe the regular Rabi oscillations
that basically depend on the pulse area. This is because the
populated dressed states λ1ðtÞ and λ3ðtÞ are the lowest pair
[see Fig. 1(d)], and the generalized pulse area A ¼R
T
0 dt½λ1ðtÞ − λ3ðtÞ� is dominated by the dynamic phase
accumulated by the lowest dressed state, whose Autler-
Townes splitting approximately follows the field envelope.
In the adiabatic limit, we can obtain analytic results for the
asymmetric configuration, although the expressions are
more cumbersome and are not presented here. In Fig. 2(c),
we compare the analytical results with the exact numerical
solution of the TDSE showing full coincidence. Figure 2(d)
shows the density plot of the final yield of population
transfer as a function of S0 and δ, calculated numerically
from the TDSE.
What is essentially required to observe an ARO? As

previously mentioned, we need to isolate the TLDS among
the set of all levels. This implies using relatively long
pulses, with a bandwidth smaller than the energy spacing,
such that there is no transient absorption to other states
induced by the lack of energy resolution. The initial and
target states cannot both be the highest or lowest energy
eigenstates of their respective manifolds. Hence, a mini-
mum number of four coupled levels are needed, but there is
no upper limit on the number of states. In the following, we
report representative results for two more complex systems.
We first consider population transfer in a system of two
fully coupled five-level ladders, with Hamiltonian

H ¼
X
M

δMjMihMj þ
X
M0

ðδ0M0 þ ΔÞjM0ihM0j −ΩðtÞ=2

×

�X
M;M0

jMihM0j þ H:c:

�
; ð6Þ

where M, M0 ¼ �2, �1, 0, and δ, δ0 are the energy
splittings of the ground and excited manifolds. The left
column of Fig. 3 shows the population of the target state as
a function of the pulse area when we start in the j0i state to
reach the target state j00i using Δ ¼ 0 or the target state
j − 20i using Δ ¼ −2δ0. If the transition is not resonant, an
additional detuning modulates the oscillation and affects
the maximum population transfer that can be achieved, as
in Eq. (1). When the pulse duration is on the order of the
period associated with the energy splitting, the population
flow is not fully selective, but one can still observe AROs
between the overall population of the manifolds. For
shorter pulses, we observe normal Rabi oscillations and
lower yields, due to Raman transitions.

FIG. 2. Coherent population transfer to the target state in the
symmetric (a) and asymmetric (c) tripod schemes, as a function of
the pulse area, for δτ0 ¼ 5. The red dotted line represents the
analytical results (neglecting nonadiabatic couplings) and the
black solid line represents the numerical solution of the TDSE.
(b), (d) The target population at final time T as a function of both
pulse area S0 and splitting δ.
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The right column of Fig. 3 shows the corresponding
dressed states when Ω0τ0 ¼ 10. The symmetric arrange-
ment minimizes the nonadiabatic couplings isolating the
TLDS and a perfect ARO is observed [Figs. 3(a) and 3(b).
Asymmetries cause larger couplings that lead to some
distortions in the ARO and losses in the yield of population
inversion [Figs. 3(c) and 3(d)]. A similar effect is observed
if the Rabi frequencies among the different levels are not
equal. Figures 3(e) and 3(f) show the change in the ARO
when the energy splittings in the manifolds are different. In
general, an ARO will occur when the populated dressed
states are constrained by avoided crossings with the near-
lying dressed states, which will happen as long as there are
no strong selection rules that forbid most couplings,
generating block-diagonal Hamiltonians. This is the case,
for instance, in higher angular momentum states (M ≥ 2),
where the selection rule ΔM ¼ �1 will forbid the ARO by
breaking the necessary linking couplings. In addition, if the
dipole couplings decrease quickly in the manifold as ΔM
increases, the nonadiabatic couplings cannot be neglected
and the pattern of the ARO becomes more complex.
To further illustrate the universality of the AROs, we

next consider electronic excitation from the ground state

1Σg to the first excited state 1Σu in the Na2 dimer. Here, the
Franck-Condon couplings for the different state-to-state
transitions are quite diverse, as are the energy splittings due
to anharmonicities and differences in the ground and
excited potential energy curves of the molecule. In
Figure 4(a), we show the final electronic population (which
could be tracked by the overall fluorescence) as a function
of the pulse peak amplitude E0 and the relevant vibrational
population. We use Gaussian pulses of 500 fs duration
(FWHM) with carrier frequencies resonant to the chosen
target vibrational state (v0 ¼ 1 and v0 ¼ 4 in the chosen
examples). In the simulations, we use realistic ab initio
potentials and transition dipoles [12], but we neglect
transitions to higher excited electronic states and ionization,
which may affect the dynamics at the larger intensities. The
field must be quite intense, as the chosen transitions are
below the Franck-Condon region, where the coupling
is highest (∼v0 ¼ 8). In Fig. 4(b), we show an example
of the population histories with E0 ¼ 0.0045 a.u., at the
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FIG. 3. Target population at final time as a function of the pulse
area (left column) and the corresponding dressed states for
Ω0τ0 ¼ 10 (right column) in a system of two coupled five-level
ladders with δτ0 ¼ 5. (a), (b) We start and end in the middle of the
ladder (M ¼ M0 ¼ 0). (c), (d) We start in the middle and end at
the lowest level of the ladder (M0 ¼ −2). (e), (f) The target ladder
has a different energy splitting (δ0 ¼ 4). The populated dressed
states are always shown with thicker blue lines.

FIG. 4. (a) Electronic excited state populations Pe (dashed
lines) for two different target vibrational states v0 ¼ 1 and v0 ¼ 4
of the excited electronic state of Na2, as a function of the pulse
amplitude; population of vibrational state v0 ¼ 1 of the excited
electronic state (solid line). (b) Population dynamics for the
electronic transition v ¼ 0 to v0 ¼ 1 using E0 ¼ 0.0045 a.u. The
solid lines are the populations in the initial and target vibrational
states, while the dashed lines are the electronic populations Pg

and Pe.
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maximum of the third Rabi oscillation. The breakdown of
the adiabatic conditions for large E0 leads to considerable
transient excitation of other vibrational states of the ground
and excited potential. Although less state selective, full
electronic AROs are clearly observed in spite of the
complexity of the system.
In summary, we have shown a new generic effect of

coherent excitation of quantum systems. Under strong
excitation with long pulses (areas typically larger than
2πδ), two-level dressed states are isolated by avoided
crossing with the remaining dressed states of the system.
When the initial or target states are embedded in a manifold
of levels, the Rabi oscillation frequency of the populations
depend on the characteristic energy splitting and not on the
pulse area. At the final time, the population and coherence
remains in the two-level subsystem formed by the initial
and target state, showing that the robustness of state
preparation by Rabi oscillations exceeds what was pre-
viously expected. In addition, the sensitivity of the ARO to
the energy splittings could in principle be used to obtain the
parameters of the Hamiltonian, even when the additional
levels in the manifold are never (or very weakly) populated
at the final time. Thus, coherent population dynamics via
the ARO could be used as a new spectroscopic method.
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