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In the present Letter, we consider a class of extended scalar-tensor-Gauss-Bonnet (ESTGB) theories for
which the scalar degree of freedom is excited only in the extreme curvature regime. We show that in the
mentioned class of ESTGB theories there exist new black-hole solutions that are formed by spontaneous
scalarization of the Schwarzschild black holes in the extreme curvature regime. In this regime, below
certain mass, the Schwarzschild solution becomes unstable and a new branch of solutions with a nontrivial
scalar field bifurcates from the Schwarzschild one. As a matter of fact, more than one branch with a
nontrivial scalar field can bifurcate at different masses, but only the first one is supposed to be stable. This
effect is quite similar to the spontaneous scalarization of neutron stars. In contrast to the standard
spontaneous scalarization of neutron stars, which is induced by the presence of matter, in our case, the
scalarization is induced by the curvature of the spacetime.
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Introduction.—The historic direct detection of gravita-
tional waves has opened a new era in physics, giving a
powerful tool for exploring the strong-gravity regime, where
spacetime curvature is extreme [1]. General relativity (GR) is
well tested in the weak-field regime, whereas the strong-field
regime still remains essentially unexplored and uncon-
strained. There are both phenomenological and theoretical
reasons for the modification of the original Einstein equa-
tions. The attempts to construct a unified theory of all the
interactions naturally lead to scalar-tensor-type generaliza-
tions of general relativity with an additional dynamical scalar
field and with Lagrangians containing various kinds
of curvature corrections to the usual Einstein-Hilbert
Lagrangian coupled to the scalar field [2–5]. The most
natural modifications of this class are the extended scalar-
tensor theories, where the usual Einstein-Hilbert action is
supplemented with all possible algebraic curvature invariants
of second order, with a dynamical scalar field nonminimally
coupled to these invariants. We shall focus on the extended
scalar-tensor-Gauss-Bonnet (ESTGB) gravity as a natural
modification of general relativity and a natural extension of
the standard scalar-tensor theories. A very important prop-
erty of ESTGB gravity is that the field equations are of
second order as in general relativity and the theory is free
from ghosts. A particular model of ESTGB gravity, the so-
called Einstein-dilaton-Gauss-Bonnet gravity (with a cou-
pling function αeγφ and vanishing potential for the dilaton
field) was extensively studied in the literature [6–14].
In the present Letter, we shall consider a class of ESTGB

theories with scalar coupling functions, for which the scalar

degree of freedom is excited only in the extreme curvature
regime. In particular, we shall show that in the mentioned
class of ESTGB theories there exist new black-hole
solutions that are formed by spontaneous scalarization of
the Schwarzschild black holes in the extreme curvature
regime. In contrast to the standard spontaneous scalariza-
tion [15–17], which is induced by the presence of matter, in
our case, the scalarization is induced by the curvature of the
spacetime.
Basic equations and setting the problem.—The general

action of ESTGB theories in vacuum is given by

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μφ∇μφþ λ2fðφÞR2
GB�; ð1Þ

where φ is the scalar field with a coupling function fðφÞ
depending only on φ, λ is the Gauss-Bonnet coupling
constant having dimension of length, and R2

GB ¼ R2 −
4RμνRμν þ RμναβRμναβ is the Gauss-Bonnet invariant. The
action yields the following field equations

Rμν −
1

2
Rgμν þ Γμν ¼ 2∇μφ∇νφ − gμν∇αφ∇αφ; ð2Þ

∇α∇αφ ¼ −
λ2

4

dfðφÞ
dφ

R2
GB; ð3Þ

where ∇μ is the covariant derivative with respect to the
spacetime metric gμν and Γμν is defined by
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Γμν ¼ −Rð∇μΨν þ∇νΨμÞ − 4∇αΨα

�
Rμν −

1

2
Rgμν

�
þ 4Rμα∇αΨν þ 4Rνα∇αΨμ − 4gμνRαβ∇αΨβ

þ 4Rβ
μαν∇αΨβ; ð4Þ

with Ψμ ¼ λ2 dfðφÞ
dφ ∇μφ.

We consider further static and spherically symmetric
spacetimes as well as static and spherically symmetric
scalar field configurations. The spacetime metric then can
be written in the standard form

ds2 ¼ −e2ΦðrÞdt2 þ e2ΛðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð5Þ

The dimensionally reduced field equations are as follows:

2

r

�
1þ 2

r
ð1 − 3e−2ΛÞΨr

�
dΛ
dr

þ ðe2Λ − 1Þ
r2

−
4

r2
ð1 − e−2ΛÞ dΨr

dr
−
�
dφ
dr

�
2

¼ 0; ð6Þ

2

r

�
1þ 2

r
ð1 − 3e−2ΛÞΨr

�
dΦ
dr

−
ðe2Λ − 1Þ

r2
−
�
dφ
dr

�
2

¼ 0;

ð7Þ

d2Φ
dr2

þ
�
dΦ
dr

þ 1

r

��
dΦ
dr

−
dΛ
dr

�
þ 4e−2Λ

r

�
3
dΦ
dr

dΛ
dr

−
d2Φ
dr2

−
�
dΦ
dr

�
2
�
Ψr −

4e−2Λ

r
dΦ
dr

dΨr

dr
þ
�
dφ
dr

�
2

¼ 0; ð8Þ

d2φ
dr2

þ
�
dΦ
dr

−
dΛ
dr

þ 2

r

�
dφ
dr

−
2λ2

r2
dfðφÞ
dϕ

�
ð1 − e−2ΛÞ

�
d2Φ
dr2

þ dΦ
dr

�
dΦ
dr

−
dΛ
dr

��

þ 2e−2Λ
dΦ
dr

dΛ
dr

�
¼ 0; ð9Þ

with Ψr ¼ λ2 dfðφÞ
dφ

dφ
dr.

In the present Letter, we are interested in ESTGB
theories (ESTGBTs) with coupling function fðφÞ satisfy-
ing the conditions df

dφ ð0Þ ¼ 0 and b2 ¼ d2f
dφ2 ð0Þ > 0. (We

consider here the case when the cosmological value of the
scalar field is zero, φ∞ ¼ 0.) Without loss of generality, we
can put b ¼ 1 and this can be achieved by rescaling the
coupling parameter λ → bλ and by redefining the coupling
function f → b−2f. In addition, since the theory depends

only on dfðφÞ
dφ , we can also impose fð0Þ ¼ 0.

The natural and important question is whether the class
of ESTGBTs defined above admits (static and spherically
symmetric) black-hole solutions. From the dimensionally
reduced field equations (6)–(9), it is clear that the usual

Schwarzschild black-hole solution is also a black-hole
solution to the ESTGBT under consideration with a trivial
scalar field φ ¼ 0. We shall, however, show that the
Schwarzschild solution within a certain range of the mass
is unstable in the framework of the ESTGBT under
consideration. For this purpose, we consider the perturba-
tions of the Schwarzschild solution with massM within the
framework of the described class of ESTGBT. It is not
difficult to see that in the considered class of ESTGBTs the
equations governing the perturbations of the metric δgμν are
decoupled from the equation governing the perturbation δφ
of the scalar field. The equations for the metric perturba-
tions are, in fact, the same as those in the pure Einstein
gravity, and therefore, we shall focus only on the scalar
field perturbations. The equation governing the scalar
perturbations is

□ð0Þδφþ 1

4
λ2R2

GBð0Þδφ ¼ 0; ð10Þ

where□ð0Þ andR2
GBð0Þ are the D’Alambert operator and the

Gauss-Bonnet invariant for the Schwarzschild geometry.
Taking into account that the background geometry is static
and spherically symmetric, the variables can be separated in
the following way: δφ ¼ ½uðrÞ/r�e−iωtYlmðθ;ϕÞ, with
Ylmðθ;ϕÞ being the spherical harmonics. After substituting
in (10) and introducing the tortoise coordinate dr� ¼
ð1 − 2M

r Þ−1dr, we obtain the following Schrödinger-like
equation

d2u
dr2�

þ ½ω2 −UðrÞ�u ¼ 0; ð11Þ

with a potential

UðrÞ ¼
�
1 −

2M
r

��
2M
r3

þ lðlþ 1Þ
r2

− λ2
12M2

r6

�
: ð12Þ

A sufficient condition for the existence of an unstable
mode is [18]

Z þ∞

−∞
Uðr�Þdr� ¼

Z
∞

2M

UðrÞ
1 − 2M

r

dr < 0: ð13Þ

For the spherically symmetric perturbations, the above
condition gives M2 < 3

10
λ2. Therefore, we can conclude

that the Schwarzschild black holes with mass satisfying
M2 < 3

10
λ2 are unstable within the framework of the

ESTGBT under consideration. Stated differently,
the Schwarzschild black holes become unstable when
the curvature of the horizon exceeds a certain critical
value—in terms of the Kretschmann scalar of the horizon
KH, the instability occurs when KH > 25

3λ4
. As a matter of

fact, this is only a sufficient condition for instability and the

PHYSICAL REVIEW LETTERS 120, 131103 (2018)

131103-2



true point of the first bifurcations is actually at a little bit
larger masses.
This result naturally leads us to the conjecture that, in our

class of ESTGBT and in the interval where the
Schwarzschild solution is unstable, there exist black-hole
solutions with nontrivial scalar field. In the next sections,
we numerically prove that such black-hole solutions really
exist and present some of their basic properties.
Numerical setup.—In order to obtain the black-hole

solutions with a nontrivial scalar field, we solve numeri-
cally via a shooting method the system of reduced field
equations (6)–(9). The boundary and the regularity con-
ditions come from the requirements for asymptotic flatness
at infinity and regularity at the black-hole horizon r ¼ rH.
As usual, the asymptotic flatness imposes the following
asymptotic conditions: Φjr→∞ → 0;Λjr→∞ → 0, and
φjr→∞ → 0. The very existence of the black-hole horizon
requires e2Φjr→rH → 0 and e−2Λjr→rH → 0. The regularity
of the scalar field and its first and second derivatives on the
black-hole horizon leads to the following condition

�
dφ
dr

�
H
¼ rH

4λ2 df
dφ ðφHÞ

�
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24λ4

r4H

�
df
dφ

ðφHÞ
�

2

s �
:

ð14Þ

In this expression, we have to choose the plus sign, since
only in this case can we recover the Schwarzschild solution
in the limit φH → 0. Thus, black holes with a nontrivial
scalar field can exist only when

r4H > 24λ4
�
df
dφ

ðφHÞ
�

2

: ð15Þ

The mass of the black hole M and the dilaton charge
D are obtained through the asymptotics of the functions Λ,
Φ, and φ: Λ ≈ M

r þOð1/r2Þ, Φ ≈ −M
r þOð1/r2Þ, and

φ ≈ D
r þOð1/r2Þ.

Results.—In the present Letter, we consider the follow-
ing coupling function fðφÞ ¼ ð1/12Þ½1 − expð−6φ2Þ�,
which is chosen in such a way that we have both non-
negligible deviations from the Schwarzschild solution and
condition (15) is fulfilled for a large enough range of
parameters. This particular choice is quite similar to the
coupling function considered in the case of spontaneous
scalarization of neutron stars [15]. We have explicitly
checked that other choices of fðφÞ that lead to similar
results are of course possible, but exploring a large variety
of fðφÞ functions is out of the scope of the present Letter.
The Schwarzschild solution with a zero scalar field is

always a solution of the field equations, but in a certain
region of the parameter space, it becomes unstable in the
framework of the ESTGBT under consideration and new
solutions with a nontrivial scalar field appear. Moreover,
there can be regions where more than one solution with a

nontrivial scalar field exist and this corresponds, roughly
speaking, to the appearance of more than one bound state of
the potential in the perturbation equation (11). In the
present Letter, we consider only spherically symmetric
solutions, and therefore, l ¼ 0 in Eq. (12). The different
branches of solutions will have a scalar field with a
different number of zeros, similar to the eigenfunctions
of the perturbation equation (11).
Finding the solutions with nontrivial scalar field might

sometimes be numerically difficult, and it is of great help to
know the exact points of bifurcation. That is why after
employing the methodology developed in [17] and finding
numerically the eigenvalues of the perturbation equa-
tion (11), we determined the regions of the parameter
space where the Schwarzschild solution is stable and where
one or more unstable modes are present. This means that
we have determined the points of bifurcation of the
Schwarzschild solution.
The obtained black-hole solutions are plotted in Fig. 1,

where only the first three bifurcations of the Schwarzschild
solution are shown. We will call the Schwarzschild solution
the trivial branch of solutions, while the rest of the branches
of black holes with a nontrivial scalar field will be called
nontrivial branches. As one can see, all the nontrivial
branches start from a bifurcation point at the trivial branch
and they span either toM ¼ 0 (the first nontrivial branch) or
they are terminated at some nonzero M (all other nontrivial
branches), because beyond this mass the condition (15) is
violated. One can also notice that Fig. 1 is symmetric with
respect to the x axis. This is because the theory is invariant
under the symmetry φ → −φ. Thus, for a fixed M, the
solutions with positive and negative values of φH would
naturally have opposite signs of the dilaton charge, but they
have the same metric functions and thus mass.
For the first branch, there are no zeros of φ, the next one

has one zero, and the third one has two zeros, as one can see
in Fig. 2. For smaller values of M, there are more
bifurcation points, but our investigations show the corre-
sponding nontrivial branches would be even shorter and

FIG. 1. The scalar field at the horizon as a function of the
black-hole mass.
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that is why we have not plotted them. Moreover, it is
expected that only the first nontrivial branch characterized
by a scalar field without zeros will be stable, while the rest
of the branches correspond to unstable solutions. The
components of the metric gtt and grr for some represen-
tative solutions with different rH/λ are also plotted in the
bottom panel of Fig. 2 for the first nontrivial branch. As
one can see, they can deviate significantly from the
Schwarzschild one. We have not plotted gtt and grr for
the other nontrivial branches, since they are practically
indistinguishable from the pure general relativistic case.
The dilaton charge as a function of the mass is shown in

Fig. 3. While the dependence φHðM/λÞ is monotonic for the
first nontrivial branch and φH increases significantly for
small masses, DðM/λÞ has an extremum (either minimum
or maximum depending on the sign of φH) and tends to
zero for small masses.
The area of the black-hole horizon, AH ¼ 4πr2H, is

plotted as functions of the mass in the top panel of
Fig. 4 for all of the considered branches of solutions.
Only the first branch of nontrivial solutions differs signifi-
cantly from the Schwarzschild case, and the deviations are
the largest for intermediate masses. This observation is
similar to the behavior of the dilaton change.
In order to have an indicator for the stability of the black-

hole branches, one can study the entropy of the black holes.
The black-hole entropy in the presence of a Gauss-Bonnet
term in the action (1) is not just one fourth of the horizon
area and its definition is a little bit more complicated. We

adopt the entropy formula proposed by Wald and co-
worker in [19,20], namely,

SH ¼ 2π

Z
H

∂L
∂Rμναβ

ϵμνϵαβ; ð16Þ

where L is the Lagrangian density and ϵαβ is the volume
form on the two-dimensional cross section H of the
horizon. In our case, we find SH ¼ 1

4
AH þ 4πλ2fðφHÞ.

The entropy as a function of the black hole’s mass is plotted
in the bottom panel of Fig. 4. The first nontrivial branch has
an entropy larger than the Schwarzschild one and it is
therefore thermodynamically more stable. This is an
expected result since, for masses smaller than the point
of the first bifurcation, the Schwarzschild solution will get
unstable and there should be another one. The second and
the third nontrivial branches, on the other hand, have lower
entropy compared to the pure general relativistic case,
which means that they are most probably unstable. The
same is expected to apply for the rest of nontrivial branches

FIG. 2. (Top) The scalar field as a function of the normalized
radial coordinate r/rH for several black-hole solutions belonging
to the first nontrivial branch. (Middle) The scalar field as a
function of the normalized radial coordinate r/rH for black-hole
solutions belonging to the second and third nontrivial branches.
(Bottom) The gtt and grr components of the metric as functions of
the normalized radial coordinate r/rH for several black-hole
solutions belonging to the first nontrivial branch.

FIG. 3. The dilaton charge of the black hole as a function of its
mass. The notations are the same as in Fig. 1.

FIG. 4. (Top) The area of the black-hole horizon AH as a
function of the mass. (Bottom) The entropy of the black hole as a
function of its mass.
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that exist for smaller masses. The dynamical stability of our
black-hole solutions will be investigated in a future work.
Conclusions.—In the present Letter, we have studied

black-hole solutions in a particular class of ESTGB theories
described by a coupling function fðφÞ that satisfies the

conditions df
dφ ð0Þ ¼ 0 and d2f

dφ2 ð0Þ > 0. We have shown that

for such theories an effect similar to the spontaneous
scalarization of neutron stars exist—the Schwarzschild
solution becomes unstable below a certain mass and new
branches of black-hole solutions with nontrivial scalar field
appear that bifurcate from the Schwarzschild one at certain
masses. The first branch of nontrivial solutions is charac-
terized by a scalar field that has no zeros, while the scalar
field has one zero for the second branch, two zeros for the
third branch, and so on. The main difference with the
standard spontaneous scalarization of neutron stars is that
the scalar field is not sourced by the matter, but instead by
the extreme curvature of the spacetime around black holes.
This places the considered solutions among the very few
examples of scalarized black holes.
We have explicitly constructed such solutions with a

nonzero scalar field. The scalarized black-hole solutions
tend to the Schwarzschild one for very small masses and for
larger masses close to the bifurcation point, and the
maximum deviation is observed for intermediate masses.
Actually, this is true only for the first nontrivial branch
characterized by a scalar field without zeros. The rest of the
branches are terminated at some nonzero mass because,
beyond that mass, they violate condition (15).
We have studied the behavior of the black-hole entropy

and the results show that the first nontrivial branch has
higher entropy than the Schwarzschild black holes and it is
thermodynamically more stable, while the rest of the
branches have lower entropy. Thus, the general expectation
is that the first branch of solutions is stable and it is the one
that would be realized in practice because of the instability
of the Schwarzschild solutions. The other nontrivial
branches are supposed to be unstable. In a future publica-
tion, we plan to study the linear stability of the solutions
with nontrivial scalar field.
The results presented in the current Letter are for a

particular coupling function that can produce non-negli-
gible deviations from pure general relativity. We have
tested, though, several other functions satisfying the above
given conditions for fðφÞ and the results are qualitatively
very similar.
The black holes we have considered posses a nontrivial

scalar field, and thus they have scalar “hair.” When the
branch of the solution is fixed, then this hair is secondary,
which means that the dilaton charge is not an independent
parameter, but instead it depends on black-hole mass.
However, the number of the branches is an independent
parameter introducing a new hair of discrete type. One may
adopt the view that only the stable branch has to be
considered, in this way getting rid of the discrete hair.

In our opinion, the classification of black-hole solutions
presented in the present work is rather subtle and needs a
much deeper analytical investigation.
A similar effect of scalarization is observed also for

neutron stars [21,22]. The presence of nontrivial scalar field
in this case is strongly constrained by the binary pulsar
observations, so a natural question to ask is whether the
coupling function considered in the present Letter is in
agreement with these observations. Let us consider a
more general form of the coupling function fðφÞ ¼
ð1/2βÞ½1 − expð−βφ2Þ�. Based on our nonperturbative
results in [22], we obtain that the spontaneous scalarization
can give rise to stable neutron stars with a nontrivial scalar
field only for λ/M⊙ > 14.5 and β > 32. These estimates
are made for the MPA1 equation of state [23], but similar
bounds should hold for other modern realistic equations of
state. Thus, it is evident that the coupling function used in
the present Letter is well within the observational bounds
imposed by the binary pulsar observations. In other words,
for the chosen coupling function fðφÞ with β ¼ 6, one can
expect large effects for black holes and no effects in binary
pulsars.
At the end, let us comment on the importance of our

results in view of the recent detection of gravitational wave
emission by binary black-hole mergers. One of the most
prominent effects would come from the fact that if the black
holes are scalarized there will be an additional channel of
energy loss during the inspiral phase via the emission of
dipole scalar field radiation. As a result, the inspiral will be
faster in comparison with the pure general relativistic case,
similar to the mergers of scalarized binary neutron stars
[24,25]. Of course, a full numerical calculation of the
waveform including the nonlinear phase of the merger
would give us even a more powerful tool for constraining
the ESTGB gravity.
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Note added in proof.—Recently, two papers studying a
similar model for BHs appeared in the Refs. [21,26].
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