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The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron
stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the
presence of gravitational slip (η) in cosmology is intimately tied to modifications of GW propagation.
This new constraint implies that the only remaining viable source of gravitational slip is a conformal
coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate
gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that
(i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible
exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip
parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be
violated if gravity is modified.
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Introduction.—The recent detection of a gravitational
wave and an electromagnetic signal from themerging of two
neutron stars [1] (events GW170817 and GRB 170817A,
hereinafter “the Event”) provides not only an exciting
discovery, but it also strongly challenges the observational
viability of large classes of gravitational theories for the late
Universe as anticipated first in [2], discussed in [3,4], and
then following the detection, e.g., in [5–8]. Theories aiming
to describe the late-time acceleration of the Universe
introduce novel, nontrivial interactions between the space-
timemetric and new extra degrees of freedom, such as scalar
(Horndeski [9,10], vector (Einstein-Aether [11], generalized
Proca [12,13]), and tensor (bigravity) fields.
In [14,15], it was shown for the first time that a precise

link between tensor and scalar fluctuations in cosmology
exists: a modification to the gravitational-wave propagation
at any scale implies the existence of gravitational slip
(η ≠ 1) for large-scale scalar fluctuations, with both mod-
ifications driven by exactly the same theory-space param-
eters of the gravitational model. The gravitational slip
leaves a particular and observable imprint on the formation
of structures in the Universe, which can be used to
constrain models of late-time acceleration [2,16–18].
The Event has allowed LIGO to measure the speed of

a gravitational wave (GW) with precision jcT=c − 1j ≤
1 × 10−15 [19]. For all intents and purposes, from the point
of view of cosmology, the speed of GWs at the present time
is now known to be that of light. By the above argument,
the range of possible scenarios for structure formation is
also narrowed. In this Letter, we ask the question: What are

the key implications of the Event for the phenomenology of
a large-scale structure?
We will discuss below the implications for each class of

acceleration models, featuring one extra degree of freedom
in turn, introducing only the essential notation and defi-
nitions here. Considering the line element of scalar fluctua-
tions in Newtonian gauge, ds2 ¼ −½1þ 2Ψðx; tÞ�dt2þ
a2ðtÞ½1 − 2Φðx; tÞ�dx2, we define the gravitational slip
as η≡Φ=Ψ ≠ 1 and the respective effective Newton’s
constants in momentum space Y ≡ −2k2Ψ=ða2ρmδmÞ and
Z ¼ ηY, where δm is the comoving matter density contrast.
Our working definition of modified gravity is the one
introduced in [14], i.e., any gravitational model modifying
the linear propagation of tensor modes compared to general
relativity (GR), i.e., which by [14,15] produces a gravita-
tional slip from perfect-fluid sources.
In this Letter, we start with the remaining viable scalar-

tensor models of gravity. With the new constraint, they can
have, atmost, a conformal coupling to curvature [5–8],which
is now the only admissible cause of gravitational slip from
perfect-fluid matter. We demonstrate that if slip is generated
at all, it either has no scale dependence at linear scales or it
disappears at large scales,with the theory of gravity returning
to η ¼ 1 there. We show that the growth rate must be higher
than GR for all models, with the possible exception of the
single remaining class of “beyond Horndeski” theories.
Then we show that the remaining viable vector-tensor

theories cannot generate slip at all, and in no remaining
viable such model can the growth rate be lower than in GR.
The Event has not placed new constraints on theories of

massive gravity [8]. We do not study these further, since
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there is no single model of massive (bi)gravity which could
account for the whole of cosmological history without
some sort of pathology [20–24] unless it has the same
predictions as Lambda cold dark matter (ΛCDM) [25].
Scalar-tensor theories: Horndeski.—Horndeski theories

are the most general scalar-field theories that have equa-
tions of motion with no higher than second derivatives [9]
and where all matter is universally coupled to gravity.
They include as a subset the archetypal modifications of
gravity, such as fðRÞ and Brans-Dicke theories, as well as
Galileons [26,27]. The popular dark energy models of
quintessence [28,29] and k-essence [30] are also subclasses
of Horndeski models. At the level of the action, they are
described by four, in principle, arbitrary coupling functions
G2;3;4;5ðX;ϕÞ, where X ≡ −ð∂ϕÞ2=2. At the same time, it
has been shown [31] that the dynamics of linear fluctua-
tions on the cosmological background are completely
characterized by four (time-dependent) functions defined
as linear combinations of the derivatives with respect to X,
ϕ of subsets of the coupling functions Gi: the kineticity
αKðtÞ (involving all four of the Gi), related to the Jeans
scale for the scalar; the braiding αBðtÞ (involving G2;3;4),
measuring the degree of kinetic mixing between the
scalar and the metric, the running of Planck mass
αMðtÞ, and the tensor speed excess αTðtÞ (both involving
only the curvature couplings G4;5). In particular, αT ≡
c2T − 1 measures the departure of the GW’s speed from
that of light, and it is the parameter constrained to be
effectively zero by the Event [1]. Requiring that this not
be achieved by a severe tuning of the parameters implies
that the scalar can, at most, be coupled conformally to
curvature, i.e., G5 ¼ 0 and G4 ¼ G4ðϕÞ [5,6,8]. This
means that the most general Horndeski model still allowed
has the Lagrangian

L ¼ fðϕÞ
2

Rþ KðX;ϕÞ −GðX;ϕÞ□ϕ; ð1Þ

i.e., it belongs to the class of kinetic gravity braiding (KGB
[32]) whenever the KGB term G3 ¼ GðXÞ, extended by a
conformal coupling to gravity. Setting G3 ¼ GðϕÞ reduces
these models to conformally coupled k-essence [33,34],
while setting K ¼ VðϕÞ, G ¼ 0 is equivalent to fðRÞ
gravity. Setting f ¼ const, means gravity is no longer
modified, but the model is nonetheless capable of accel-
erating the expansion of the Universe without a cosmo-
logical constant [32].
The class of models (1) is significantly more restricted

than the full Horndeski model; thus, we can make precise
predictions for large-scale structure formation. In particu-
lar, using the definitions and results of [31], we have that
in the small-scale limit, yet still linear regime within the
quasistatic approximation (i.e., k → ∞) (In Ref. [15], we
showed that under the extremely fine-tuned choices of a
Horndeski action, it would, in principle, be possible to

preserve a configuration with Y ¼ Z everywhere under
time evolution, thus dynamically shielding the modification
of gravity. The measurement of αT ¼ 0 means that none of
those models are still viable; thus, if the coupling to gravity
is not minimal, the configuration of the fluctuations will
reflect it.),

Y∞ ¼ 1þ ðϰ þ αMÞ2
2N

; Z∞ ¼ 1þ ϰ2 − α2M
2N

; ð2Þ

where αM ¼ _ϕf;ϕ=Hf is the rate of evolution of the
effective Planck mass. The function ϰ ≡ αB þ αM is the
part of the braiding produced by the term GðXÞ, it is zero
in Brans-Dicke, k-essence, and fðRÞ models. N is the
numerator of the sound speed of the scalar and must be a
positive definite (the denominator of the sound speed is
positive as a result of the no-ghost condition),

N ≡ −ð2þ αMÞ _H=H2 þ 3Ωm=f þ αMð2þ αMÞ
− α0M þ ϰð2 − ϰÞ=2 − ϰ _H=H2 þ ϰ0: ð3Þ

We can combine these results to obtain

η∞ − 1 ¼ −
2αMðϰ þ αMÞ

2N þ ðϰ þ αMÞ2
: ð4Þ

We can thus make general statements about the properties
of gravity for the remaining scalar–tensor theories at small
linear scales: (1) The effective Newton’s constant for
nonrelativistic matter is Y∞ ≥ 1, so in the remaining
Horndeski models, matter cannot cluster slower than in
GR given the same background and the same Ωm [35,36].
(2) The effective Newton’s constant for the lensing poten-
tial, Σ∞ ≡ ðY∞ þ Z∞Þ=2, is different from unity whenever
the KGB term is present, ϰ ≠ 0, or ϰ ¼ −αM. (3) The
gravitational slip parameter η∞ ≡ Z∞=Y∞ can be both
larger or smaller than unity.
If the KGB term is not present, Σ∞ ¼ 1 and η∞ ≤ 1:

thus, a violation of either of these conditions can be
interpreted as a detection of the presence of kinetic gravity
braiding. When gravity is minimally coupled f ¼ const,
αM ¼ 0. This gives Y∞ ¼ Z∞ > 1 and η ¼ 1 at all scales;
in this case, if the modification is large enough, the sign
of the cross-correlation of the galaxies and the integrated
Sachs-Wolfe effect can reverse, which is quite strongly
disfavored by data [37,38].
For a generic Lagrangian (1), the fluctuations of the

scalar field will have a mass M (see, e.g., Refs. [39,40] for
the expression). If M ≲H, then the expressions (2) are
valid at all linear scales inside the sound horizon of the
scalar, csk ≫ H [41]. If H ≪ M ≪ kNL, where kNL is a
scale associated with nonlinearities either in the dark matter
or screening of gravity, then a transition will occur and
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η → 1; k < M; ð5Þ

recovering the GR result for slip. Note that theories
modifying cT do not recover this GR result at large scales.
Clearly, for large masses M ≫ kNL, no modification of
gravity is observed in linear structure formation at all.
Scalar-tensor theories: beyond Horndeski.—“Beyond

Horndeski” models extend the Horndeski action by
allowing for higher-order equations of motion. As a result
of having degenerate Hamiltonians they nonetheless propa-
gate no extra degree of freedom beyond one scalar and two
tensors [42–45]. There exists exactly one choice of term
additional to the Lagrangian (1) that does not affect the
speed of GWs: combining the quartic Horndeski term with
the quartic beyond-Horndeski term and setting XF4 ¼
−2G4;X [5,7,8]. This is the case, since the overall coupling
of the scalar to curvature remains conformal, but with a
function of X instead of just ϕ, giving η ≠ 1. One may
argue that this particular choice of F4 is not necessarily a
tuning since in flat space the two Lagrangian terms are
related through a total derivative, and so their curved-space
corrections should be suppressed by the Planck mass. The
new physics in a large-scale structure can be described by a
new parameter αH. General beyond-Horndeski models can
have Y∞ < 1, for a large-enough αH and thus reduce the
growth rate with regard to GR on the same background
[46]. In the remaining viable models, however, αH is related
to αM, the rate at which the Planck mass evolves, which is
constrained by observations [47]. We leave the detailed
analysis of whether these constraints can be evaded
sufficiently to reduce growth rates for future work.
Vector-tensor theories.—There are two classes of mod-

ifications of gravity featuring vectors: (i) the Einstein-
Aether (EA) model [11] and its generalization [48], and
(ii) the generalized Proca theory [12,13] along with its
“beyond generalized Proca” theory generalized version,
similar to the “beyond Horndeski” theory [49]. Class (i) is
also closely related to the low-energy limit of Hořava-
Lifshitz theories [50].
(Generalized) EA models, are theories of a vector field

uμ, with the action comprising four terms quadratic in
first derivatives of uμ, K≡ −β1∇μuν∇μuν − β2ð∇μuμÞ2 −
β3∇μuν∇νuμ (we follow the notation of Ref. [51]). The
generalized EA model generalizes the action K to an
arbitrary function F ðKÞ.
One removes a would be ghost by constraining the

magnitude of the vector field, adding a term with a
Lagrangian multiplier. As we discussed in our first paper
on this topic [14], the same term in the action gives a source
for gravitational slip from perfect-fluid matter in cosmo-
logy, and it changes the speed of propagation of GWs:
cshear ¼ β1 þ β3; the result for generalized EA theories is
the same [52]. As a consequence of the Event, the
constraint cshear ¼ 0 applies to all of these models [8].
This means that (generalized) Einstein-Aether models

cannot produce gravitational slip from perfect-fluid matter;
η ¼ 1 at all scales. Moreover, the effective Newtons’
constant in EA is now Y∞ ¼ ð1þ 3β2Þ=ð1 − β1Þ with
both β1;2 > 0 for stability; i.e., Y∞ ≥ 1 and growth rates
on the same background must be higher than in GR. In a
generalized EA model, the expression has the same form
with the replacement βi → F ;Kβi [53], and the same
conclusions can be reached.
Generalized Proca theories, on the other hand, are the

most general theorieswith second-order equations ofmotion
that propagate a massive vector in addition to the graviton,
with spurious degrees of freedom eliminated through a
nonlinearly realized Abelian gauge symmetry. The general
Lagrangian is described by five functions of the vectors’
magnitude X ≡ −AμAμ=2 only (G3;4;5;6 and g5), and one
functionG2 of any combination ofX, the vector kinetic term
FμνFμν, and the magnitude of FμνAν, resulting in a structure
similar to Horndeski models (see Refs. [12,54–56]). There
are two branches of solutions in these theories, only one of
which is dynamical. In this dynamical branch, the vector is
explicitly coupled to a curvature through the functions G4

and G5, which modifies the speed of GWs. Requiring that
GWs propagate at the speed of light leads to the constraint
thatG5 ¼ 0 andG4 ¼ const. 2G4 can be then identifiedwith
the effective Planck mass squared, and it is not a free
parameter of the theory [8].
We have reanalyzed the implications of this constraint on

structure formation in these models. Reference [57] showed
that the general dynamics of scalar perturbations on a
cosmological background depend on seven functions wi,
each a linear combination of derivatives of the Gi. In the
remaining viable limit, this set reduces to just two: w2,
depending only on G3;X, and w3 < 0, depending on all of
the others. The sign of w3 is fixed by requiring that the
propagating vectors not be ghosts. For all of these viable
models, there is no gravitational slip, η ¼ 1, and the short-
scale gravitational constant reduces to

Y∞ ¼ 1þ −w3w2
2

N
; N ≡ 2μ2=ϕþ w3w2

2; ð6Þ
where μ2 is a function of the wi defined in [57]. For N > 0,
Z ¼ Y ≥ 1, and gravity is stronger that in ΛCDM.
This is always the case for a model with an effective
dark energy (DE) equation of state parameter wDE ≤ −1,
since the sound speed of the scalar is only positive when
N − 4w3ð2H þ w2Þ2ρDEð1þ wDEÞ > 0. In addition, in the
future de Sitter attractor common to these theories, we
necessarily have N > 0. Changing the sign of N at an
earlier time would be, in principle, possible for a dark
energy with wDE > −1, but that would lead to N ¼ 0 and
thus a divergent effective Newton’s constant, at least at one
moment in time. Therefore, we conclude that Y ≥ 1 at all
times in the remaining viable generalized Proca models.
In the same spirit as “beyond Horndeski” models, there

exists a more general action for vectors (“beyond
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generalized Proca” models). It is possible to write down
four additional terms in the action, f4;5 and f̃5;6, with
arbitrary functions of X as coefficients [49]. Then f4;5 enter
the speed of GWs and must be set to zero as a result of the
Event. It was shown in Ref. [49] that, on the Friedmann-
Robertson-Walker metric, the scalar perturbations depend
on one more function of time, w8, but, again, requiring
cT ¼ 1 reduces both the equations of the background and
the quadratic action for perturbations to be exactly the same
as in the case of the generalized Proca models; i.e., there is
no new phenomenology in this scalar sector of linear
cosmology in this much wider set of theories.
We can thus conclude that the Event has constrained

general vector-tensor theories and the low-energy limit of
Hořava-Lifshitz theories to be unable to produce a gravi-
tational slip from dust, and the growth rate in the remaining
viable models must be at least as fast as in GR for the same
background and Ωm.
Constraining the scalar mass.—As shown in [2], one

can obtain three quantities from cosmological large-scale
structure power spectra in the linear regime such that the
dependence on the power spectrum shape, which cannot be
known without an assumption for the theory of gravity,
cancels out:

P1 ≡ R=A ¼ f=b; ð7Þ

P2 ≡ L=R ¼ Ωm0Yð1þ ηÞ=f; ð8Þ

P3 ≡ R0=R ¼ f þ f0=f; ð9Þ

where b is the dark matter-galaxy bias, and a prime stands
for a derivative with respect to loga. The second quantity is
also often called EG [58], while the third one is related to
the commonly used quantity fσ8ðzÞ (see [59]) by the
following relation

P3 ¼
(fσ8ðzÞ)0
fσ8ðzÞ

: ð10Þ

Observationally, P3 can be obtained by taking finite
differences across redshift bins

P3 ≈ −ð1þ zÞΔ(fσ8ðzÞ)
fσ8ðzÞΔz

: ð11Þ

In [18], we showed that the assumption of the weak
equivalence principle for galaxies is enough to write in a
general theory of modified gravity

3P2ð1þ zÞ3
2E2ðP3 þ 2þ E0

EÞ
− 1 ¼ η; ð12Þ

where EðzÞ≡HðzÞ=H0 is the dimensionless Hubble func-
tion. This relation is valid for any cosmology and scale,

regardless of Y, of bias, and of initial conditions. We can
now form a null relation that is violated whenever gravity
is modified

P2 ¼ 4E2
ðP3 þ 2þ E0

EÞ
3ð1þ zÞ3 : ð13Þ

Since the only remaining viable modified gravity models
that generate slip are scalar-tensor, any violation of this
relationship will be evidence that the effective Planck mass
evolves in time. We have argued here that in the remaining
parameter space, this relation will either be scale indepen-
dent until the sound horizon or will return to the GR value
at k < M, giving a method to constrain the mass of the
degree of freedom modifying gravity.
Summary and conclusions.—The observation of coinci-

dent gamma radiation and GWs from the same source at
cosmological distances by LIGO-VIRGO and Fermi-
INTEGRAL has put so strong a bound on any deviation
of the speed of GWs from that of light that, for the purposes
of cosmology, any dynamics of modified gravity that cause
a change in the speed of propagation at the present epoch
must be completely irrelevant. In each class of gravitational
theories beyond GR, this severely limits the viable
theory space.
We previously proved that there is a one-to-one relation-

ship between the modification of the propagation of GWs
and the sourcing of gravitational slip in the presence of
perfect-fluid matter. The above new constraint in turn
significantly reduces the sort of configurations or sources
of slip that are still allowed, leading to strong observational
consequences.
In this Letter, we have shown that, in the newly restricted

viable parameter space of universally coupled modified
gravity theories, it is impossible to reduce the growth rate in
structure formation at small, linear scales with respect to
standard gravity on the same background and dark matter
density. This applies to Horndeski scalar-tensor models and
any vector-tensor theories. Moreover, gravitational slip in
the presence of perfect-fluid matter can only be produced
by a conformal coupling in scalar-tensor models and,
therefore, an evolving Planck mass. As a direct observa-
tional consequence, it follows that a future detection of
gravitational slip would exclude all vector-tensor and
Hořava-Lifshitz Lorentz-violating models.
If slip is present, in the remaining viable models, it is

either constant on scales inside the sound horizon of the
scalar or, for models with a sufficiently large mass, it is
screened away to its GR value η ¼ 1 at scales above the
Compton length. We have further shown how slip can be
measured, and thus the mass constrained, in all remaining
viable theories that generate it.
We note, however, that it is, in principle, possible that

growth rates can be reduced with respect to GR in “beyond
Horndeski” models, although we leave the exact limits of
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this to a future study. Although we have not discussed the
case of massive (bi)gravity models, for the sake of
completeness, let us state that it is also possible to choose
parameters in massive bimetric theories so that η ≠ 1 at
large scales and Y < 1 at small linear scales, at least for
some period of time, without instabilities during that time.
However, these theories cannot actually provide a complete
cosmological background from the Big Bang to today that
does not suffer from pathologies at some point in the course
of the cosmological evolution [20,22–24], apart from the
limit where the theory behaves exactly like ΛCDM [25].
To conclude, GWs have provided an extremely strong

constraint on possible modifications of gravity at both large
and small scales. This, in turn, has restricted the possible
modifications to the evolution of large-scale structures in a
very sharp manner, removing some of the freedom resulting
from a large model space. This will only serve as to
increase the power of upcoming cosmological surveys to
constrain or eliminate the remaining viable models.
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