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We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying
the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the
nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular,
we focus on the transient dynamics after a quantum quench and study the prethermal state via a
combination of analytic time-dependent spin wave theory and numerical methods based on matrix product
states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point
fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong
sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises
from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system
which exhibits a broken discrete symmetry.
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Introduction.—Throwing dice on the table floor is a
prototypical random (or pseudorandom) process [1]. Its
aleatory nature is a consequence of a few ingredients: the
die, the state of being initially out of equilibrium, it
dissipates its energy rolling on the table, and hence, it
relaxes onto one of few possible equilibrium configura-
tions. In this Letter, we show that the same ingredients play
an important role in the physics of quantum many-body
systems undergoing a dynamical quantum phase transition
(DQPT), leading to the emergence of an intriguing chaotic
dynamical phase once the collective dynamics of these
systems gets damped by quantum fluctuations.
DQPTs are among the most interesting phenomena

occurring in quantum many-body systems after a sudden
change of the system parameters (quantum quench) [2], a
type of process which can be realized both with ultracold
gases [3] and trapped ions [4]. Such DQPTs [5–8] are
characterized by the vanishing of a nonequilibrium order
parameter (accompanied by critical scaling behavior [9])
and being distinguished from those signaled by nonanaly-
ticities in the temporal evolution of the Loschmidt echo
[10] (see Ref. [11] for connections between the two
notions). They not only provide a genuine instance of
classical and quantum criticality out of equilibrium
[9,12,13], but they also demonstrate the emergence of
intermediate stages of relaxation with nontrivial time-
dependent fluctuations and dynamics [6]. A DQPT sepa-
rates “phases” characterized by qualitatively different
quasistationary states [5,8], anomalous coarsening [14],
aging [13–15], as well as by a nontrivial dynamical

evolution of observables and their fluctuations
[6–8,11,12]. Because of the lack of spatial and temporal
collective scales upon approaching a DQPT, they display
features reminiscent of equilibrium critical points.
DQPTs are expected to be strongly affected by quantum

fluctuations, and recent investigations beyond mean-field
approximations [9,16–18] showed that these fluctuations
influence, e.g., the early stages of the evolution [13,14]. In
this Letter, we demonstrate a more dramatic effect of
fluctuations on the dynamics of the order parameter, which
induces a qualitative modification of the dynamical phase
diagram that is, in particular, close to the dynamical critical
point. We study the nonequilibrium dynamics of an
infinite-range (mean-field) ferromagnetic system perturbed
by additional short-range interaction terms, which rule the
strength of quantum fluctuations. We show that the
dynamical phases are robust, whereas the impact of non-
equilibrium quantum fluctuations make the dynamical
critical point open up in a novel chaotic dynamical phase
where the dynamics are reminiscent of the that of a coin
toss: The asymptotic stationary state displays a finite
magnetization whose positive or negative sign is highly
sensitive to initial conditions and system parameters, as we
show in Fig. 1.
The model.—In this Letter, for the sake of definiteness,

we focus on a fully connected quantum Ising ferromagnet
in a transverse magnetic field g, in the presence of addi-
tional nearest-neighbor couplings in one spatial dimension,
governed by the Hamiltonian
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H ¼ −
λ
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XN

i;j¼1

σxi σ
x
j − g

XN

i¼1

σzi − J
XN

i¼1

σxi σ
x
iþ1; ð1Þ

where σαi are the standard Pauli matrices at lattice site i. In
the limit J → 0, H maps to the exactly solvable Lipkin-
Meshkov-Glick (LMG) model [19] and displays both a
quantum critical point in equilibrium [20] at g ¼ 2λ and a
DQPT after a quench [5,21], with the longitudinal global
magnetization SxðtÞ—with Sα ≡ hPiσ

α
i i=N—being the

dynamical order parameter of the DPT. For example, for
quenches starting from the ferromagnetic ground state at
g0 ¼ 0, SxðtÞ evolves periodically with a period set by the
postquench values g and λ of the couplings. In particular,
the time average S̄x ¼ limT→∞

R
T
0 dtSxðtÞ=T vanishes for

g > λ (because the oscillations of SxðtÞ are symmetric
around zero) while it does not for g < λ (because the
oscillations do not change the sign of Sx), corresponding to
the dynamically paramagnetic and ferromagnetic “phases,”
respectively. At the dynamical critical point, g ¼ λ, the
order parameter decays exponentially to zero with SxðtÞ ∼
e−gt for t ≫ g−1. Within mean-field theory, which is an
exact treatment of the LMG model in the thermodynamic
limit [21], the DQPT can be rationalized [8,9,21] in terms
of the motion of a classical particle with position SxðtÞ in an
effective, double-well even potential UðSxÞ. If Sxðt ¼ 0Þ is
such that U(Sxð0Þ) > Uð0Þ, then SxðtÞ explores both wells
and S̄x ¼ 0; otherwise the motion is localized within one
well and S̄x ≠ 0.
In this Letter, we study how this mean-field nonequili-

brium phase diagram is affected by quantum fluctuations.
While for J ¼ 0 all spins perform a coherent collective
motion, turning on a short-range perturbation is expected to
affect the persistent classical oscillations of SxðtÞ, altering
the features of the mean-field evolution and inducing
relaxation towards a stationary and eventual thermal state.
In order to address these questions we develop a spin

wave theory in the reference frame aligned with the
instantaneous average total spin, with the spin-coherent
state in this direction representing the instantaneous spin
wave vacuum.While for J ¼ 0 the length of the total spin is
constantly maximal, i.e., jSðtÞj≡ 1, in the presence of a
small short-range perturbation J ≠ 0 a finite density ϵðtÞ of
spin wave excitations is generated by the precessing
collective spin, yielding jSðtÞj ¼ 1 − ϵðtÞ. As long as
ϵðtÞ ≪ 1, the nonlinear, inelastic scattering among spin
waves is negligible and thermalization is expected to occur
at longer times. Accordingly, the temporal regime with
ϵðtÞ ≪ 1, within which the mean-field motion receives
correction from having J ≠ 0 while keeping its nonequili-
brium features (e.g., the DQPT), can be qualified as being
prethermal, in analogy with similar cases [22].
Outline of results.—In the presence of quantum fluctua-

tions, one would expect the collective motion of SxðtÞ to be
damped by the generation of spin wave excitations with a

finite rate, leading to the breakdown of the approximation
ϵðtÞ ≪ 1 (throughout the paper we fix energy units such
that λ̄≡ λþ J ¼ 1.). We find, instead, that for small
J ≲ 0.25, ϵðtÞ always saturates, implying that the dynami-
cal paramagnetic and ferromagnetic phases indicated by A
and B, respectively, in Fig. 1 are stable. In particular, SxðtÞ
approximately oscillates with a period which is perturba-
tively close to the mean-field one. A numerical analysis
based on the time-dependent variational principle (MPS-
TDVP) [23,24] indicates that this stability extends to larger
values of J where the density of spin waves is no longer
small. This implies that H inherits the dynamical phase
diagram of the classical case with J ¼ 0. However, the
presence of spin wave excitations makes the dynamical
critical point at λ ¼ g for J ¼ 0 fan out in a chaotic
dynamical ferromagnetic phase, denoted by C in Fig. 1.
Within C, the nonequilibrium quantum fluctuations in the
form of spin waves act effectively as a self-generated bath
responsible for the localization of the system, initially with

(a)
(b)

FIG. 1. A dynamical phase diagram of the model in Eq. (1) after
a quantum quench starting from the ferromagnetic ground state
with g ¼ 0 and positive expectation value Sx > 0 of the global
magnetization, in the plane of the postquench value g of the
transverse field and J of the nearest-neighbor coupling (here
N ¼ 100). We consider here the range of values of g and J within
which the low-density spin wave expansion is applicable, and
units are chosen such that λ̄≡ λþ J ¼ 1. The color of each point
of the diagram is determined by the value of long-time average S̄x
of Sx: light yellow for S̄x > 0, orange for S̄x ¼ 0, and blue for
S̄x < 0. Regions A and B correspond to the dynamic ferromag-
netic and paramagnetic phase, respectively, of the mean-field
model (J ¼ 0). Upon increasing J at a fixed g close to the mean-
field critical point, i.e., g ≃ λ̄, a new chaotic dynamical ferro-
magnetic phase C arises, exhibiting relaxation from an initial
paramagnetic behavior to symmetry-broken sectors [process
(a) in the inset] sometimes followed by assisted hopping between
the two sectors with opposite signs of S̄x [process (b) in the inset].
See Fig. 2 for an illustration of the dynamics in region C.
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Sx > 0, into one of the two minima of U, with either sign
and for the possible hopping of the collective spin Sx
between the two of them; these processes are sketched as
(a) and (b), respectively, in the inset of Fig. 1. The strong
sensitivity of the long-time ferromagnetic ordering to the
values of g, λ, and J, and of the initial data, can be regarded
as a signature of a collective chaotic behavior. The stability
of this picture upon increasing N in both the analytic and
the numerical approaches leads us to conclude that such
behavior carries over to the thermodynamic limit.
Time-dependent spin wave theory.—We now briefly

outline the nonequilibrium spin wave theory at the core
of this work [25]. We first introduce a time-dependent
reference frameR ¼ ðX̂; Ŷ; ẐÞ in the spin space, with its Ẑ
axis following the collective motion of S⃗ðtÞ. The change
of frame is implemented by the time-dependent global
rotation operator V(θðtÞ;ϕðtÞ) ¼ exp ( − iϕðtÞPiσ

z
i =2)×

exp ( − iθðtÞPiσ
y
i =2) parametrized by the angles θðtÞ and

ϕðtÞ, which are eventually determined in such a way that
SXðtÞ≡ SYðtÞ≡ 0. For J ¼ 0, when H is a function of the
total spin only, this requirement translates into a closed pair
of (classical) ordinary differential equations, the solution of
which determines the evolution of the order parameter
SxðtÞ ¼ sin θðtÞ cosϕðtÞ [21]. For J ≠ 0, the additional
short-range interaction renders H a function of not only
the total spin, i.e., the k ¼ 0 Fourier mode of the spins, but
also of all the kmodes of the spins, which now contribute to
the dynamics. In order to make the equations of motion
tractable and to set up a systematic expansion, we introduce
the canonically conjugated spin wave variables qi and pi at
site i with respect to the instantaneous Ẑ axis via the
Holstein–Primakoff (HP) transformation

σXi
2
≃

ffiffiffi
s

p
qi;

σYi
2
≃

ffiffiffi
s

p
pi;

σZi
2

¼ s −
q2i þ p2

i − 1

2
:

ð2Þ

We then express all the spin operators in H, see Eq. (1), in
terms of the spin wave coordinates in Fourier space q̃k, p̃k,
and retain up to quadratic terms in the spatial fluctuations
modes (q̃k, p̃k) with k ≠ 0 (i.e., we neglect collisions
among spin waves). After averaging the Heisenberg equa-
tions of motion of the spins over the nonequilibrium state
[25], we find that θ and ϕ evolve according to (recall
λ̄≡ λþ J)

dθ
dt

¼ 4½λ̄ρðtÞ − JδppðtÞ� sin θ cosϕ sinϕ

þ 4JδqpðtÞ cos θ sin θcos2ϕ;
dϕ
dt

¼ −2gþ 4½λ̄ρðtÞ − JδqqðtÞ� cos θcos2ϕ
þ 4JδqpðtÞ sinϕ cosϕ; ð3Þ

where δαβðtÞ≡P
k≠0Δ

αβ
k cos k=ðNsÞ with α; β ∈ fp; qg is

the quantum “feedback” given by the correlation functions
of the spin waves,

Δqq
k ðtÞ≡ hq̃kðtÞq̃−kðtÞi; Δpp

k ðtÞ≡ hp̃kðtÞp̃−kðtÞi;
Δqp

k ðtÞ≡ hq̃kðtÞp̃−kðtÞ þ p̃kðtÞq̃−kðtÞi=2: ð4Þ
The relevance of these spin wave excitations is controlled
by the quantity

ϵðtÞ≡ 1

N=2

X

k≠0
ðΔqq

k þ Δpp
k − 1Þ=2; ð5Þ

i.e., by the total number of spin waves divided by N=2. In
Eq. (3), ρðtÞ ¼ 1 − ϵðtÞ is the ratio between the expectation
value of the modulus of the total spin of the system and its
maximal value N=2, which is conserved by the dynamics
only when J ¼ 0 [21]. The evolution of Δαβ

k in Eq. (4) is
ruled by a system of linear differential equations involving
θðtÞ and ϕðtÞ [25]. The quadratic approximation is justified
as long as the density of excited spin waves is small, i.e.,
ϵðtÞ ≪ 1. For a quench starting from the spin coherent state
fully polarized in the x̂ direction, considered here (i.e., from
g ¼ 0) the initial data of Eqs. (3) are θð0Þ ¼ π=2, ϕð0Þ ¼ 0

with Δqq
k ð0Þ ¼ Δpp

k ð0Þ ¼ 1=2, and Δqp
k ð0Þ ¼ 0 for k ≠ 0;

in particular, ϵð0Þ ¼ 0 (note that at time t ¼ 0 the mobile Ẑ
axis is aligned with the fixed x̂ direction). Equation (3)
includes the feedback terms δαβðtÞ from quantum fluctua-
tions, which both “dress” the value of λ̄ and generate new
terms of pure quantum origin, in addition to the classical
mean-field dynamics corresponding to J ¼ 0 in Eq. (3).
Nonequilibrium quantum phase diagram.—Via a joint

numerical integration of Eq. (3) and of the evolution
equations [see Eqs. (26) in Ref. [25]) of Δαβ

k in Eq. (4),
for a range of postquench values of g and J, we obtained the
dynamical “phase” diagram portrayed in Fig. 1. In particu-
lar, for each integration, we compute the direction
(θðtÞ;ϕðtÞ) of the total spin S⃗ and the density ϵðtÞ of spin
waves, verifying that the latter always settles around a small
value at long times within the range of parameters consid-
ered here. Then, we compute the long-time average S̄x of
SxðtÞ and color the corresponding point in light yellow if
S̄x > 0, in orange if S̄x ¼ 0, and in blue if S̄x < 0. The results
of this procedure, in Fig. 1, show that the two dynamical
ferromagnetic and paramagnetic phases present for J ¼ 0

survive at J > 0: for g ≪ λ̄ the order parameter has nonzero
time average (its value being perturbatively close to the
mean-field one), while for g ≫ λ̄, it vanishes for all of the
values of J within the range considered here. In particular,
the persistent oscillations of Sx, characteristic of the mean-
field solution, are notwipedout by the spinwave bath,which
does not produce a significant noise during the prethermal
stage of dynamics and leaves the overall motion perturba-
tively close to perfect coherence for all observation times.
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Near the dynamical transition point g ≃ λ̄, the system
becomes extremely sensitive to the nonequilibriumquantum
fluctuations, realizing a peculiar intermediate phase, the
existence of which is intimately related to the conservation
of the energy. In a typical point of this region, the dynamics
of Sx is characterized by the processes illustrated by the inset
of Fig. 1 and by Fig. 2: the decay from a transient
paramagnetic behavior to one of the two ferromagnetic
sectors, possibly followed by one or more hops between
them. Typically, after an initial transient with the energy of
the macroscopic total spin slightly above the barrier Uð0Þ
separating the two ferromagnetic wells of the effective
potential U, the production of spin waves causes the
dynamics to get trapped within one of the two. The system
thus shows ferromagnetic order at long times, though it
might occasionally hop to the opposite well, assisted by the
absorption of energy from the spin waves. The asymptotic
sign of SxðtÞ, and hence of S̄x, sensitively depends on the
specific values of the parameters in a large part of this novel
ferromagnetic region (indicated by C in Fig. 1), implying a
collective chaotic character of the dynamics within it, as
illustrated in Fig. 2. Unlike the quantum critical cone
emanating from equilibrium quantum critical points at finite
temperature [27], the boundaries of region C are expected to

be sharp both towards the ferromagnetic and the para-
magnetic phases, signaling two transitions expected to be
characterized by diverging time scales.
The dynamical phases discussed here turn out to be robust

against the perturbation of J, even for values J ≃ 0.67, at
which the low-density spin wave expansion need not be
accurate. To show this, we performed numerical simulations
by using a time-dependent variational principle on the
matrix product state manifold (MPS-TDVP) [23,24], result-
ing in the evolution reported in Fig. 3; this approach allows
us to explore the dynamics of SxðtÞ up to times of the order
∼60λ̄−1. For g≲ λ̄we find a ferromagnetic region with S̄x ≠
0 of the same sign as the initial magnetization Sxðt ¼ 0Þ. For
large values of g≳ λ̄, instead, we find a paramagnetic phase
with S̄x ¼ 0 [25], while for intermediate values, S̄x does not
vanish, but it may have a sign opposite to that of Sxð0Þ; this
observation is consistent with what observed at smaller
values of J, see Fig. 3. In addition, in this regime, the final
value of S̄x may sensibly depend on the system size N: For
N ≈ 100 (see caption of Fig. 3), we observe S̄x ≠ 0 of the
same sign as Sxðt ¼ 0Þ, while for a slightly larger system
N ¼ 125, SxðtÞ at long times has the opposite sign, which is
eventually observed also in a system with N ¼ 400, as
shown by the inset of Fig. 3. This is consistent with the
sensitivity to the parameters predicted by the spin wave
approach, see Fig. 1. These numerical simulations of the
exact quantum evolution fully confirm—and even extend to
a larger region of the phase diagram—the scenario outlined
by the time-dependent spin wave theory, i.e., the robustness
of the two dynamical phases and the emergence of a chaotic
region in between.

FIG. 2. The evolution of the order parameter SxðtÞ in the
chaotic dynamical ferromagnetic phase (indicated by C in Fig. 1)
for λ̄≡ λþ J ¼ 1, g ¼ 1.03, with J ¼ 0.1 (solid red) and J ¼
0.1001 (dashed blue), i.e., two very close points in the non-
equilibrium phase diagram, located at the ending point of the
black arrow in Fig. 1 (here N ¼ 200). The dynamical order
parameter SxðtÞ initially displays a paramagnetic behavior, with a
gradual loss of energy in favor of the creation of spin waves,
witnessed by a growth of ϵðtÞ. This makes the orbit fall into one
of the two ferromagnetic wells, corresponding to process (a) of
Fig. 1. However, it might later reabsorb some spin waves and hop
to the opposite ferromagnetic sector, corresponding to process (b)
of Fig. 1. The two lines are practically on top of each other during
the initial paramagnetic transient, but show completely different
fates at the onset of the critical process (a) and they eventually end
up in distinct wells. [In both cases ϵðtÞ grows from ϵðt ¼ 0Þ ¼ 0
to values around 0.04 in the final stage.] Such extreme sensitivity
illustrates the “mosaic” appearance of the region C in Fig. 1.

FIG. 3. The evolution of Sx for J ¼ 0.67, g ¼ 0.5, 0.83, 1, 1.33
(red, green, blue, gray), with λ̄ ¼ 1 and N ¼ 400, as obtained
from MPS-TDVP simulations. Inset: The sensitivity of SxðtÞ to
the system size N in the chaotic dynamical ferromagnetic phase,
for a system with J ¼ 0.5, λ̄ ¼ 1, g ¼ 1.1, and a bond dimension
D ¼ 128. Sx approaches a positive value for small N ¼ 123, 124
(dashed, dotted). However, upon adding just one spin (N ¼ 125,
dash-dotted), Sx reverses its sign, and S̄x converges to a negative
value, which is also observed in larger systems with N ¼ 400
(solid line). For further details see [25].
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Perspectives.—In summary, the nonequilibrium quantum
fluctuations due to spin wave excitations qualitatively
modify the mean-field phase diagram, turning the J ¼ 0
quantum critical point into a phase with unusual dynamical
properties. The nonequilibrium spin wave theory at the core
of this work can be straightforwardly extended to a wide
variety of spin systems, in higher dimensions, with other
types of integrability breaking terms (of short or long-range
character) or nonequilibrium protocols: a chaotic dynamical
phase always arises whenever a mean-field system under-
going a ferromagnetic transition is subject to the impact of
out-of-equilibrium quantum fluctuations [28]. In addition,
the phenomena discussed here could bewithin experimental
reach, considering recent progress in realizing spin models
[29] as well as in highlighting universal scaling behavior
close to dynamical critical points using cold gases [30].
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