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The de Almeida–Thouless (AT) line in Ising spin glasses is the phase boundary in the temperature T and
magnetic field h plane below which replica symmetry is broken. Using perturbative renormalization group
(RG) methods, we show that, when the dimension d of space is just above six, there is a multicritical point
(MCP) on the AT line, which separates a low-field regime, in which the critical exponents have mean-field
values, from a high-field regime, where the RG flows run away to infinite coupling strength; as d
approaches six from above, the MCP approaches the zero-field critical point exponentially in 1=ðd − 6Þ.
Thus, on the AT line, perturbation theory for the critical properties breaks down at a sufficiently large
magnetic field even above 6 dimensions, as well as for all nonzero fields when d ≤ 6, as was known
previously. We calculate the exponents at the MCP to first order in ε ¼ d − 6 > 0. The fate of the MCP as d
increases from just above six to infinity is not known.
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The nature of the ordered phase of spin glasses has been
controversial for decades. When various standard calcula-
tional methods are applied to it, the results are sometimes in
conflict. The picture that derives from mean-field theory
(valid at least for infinite-dimensional systems) is that of
replica symmetry breaking (RSB) [1–5]. However, the
results of real-space renormalization group (RG) calcula-
tions favor an ordered phase with replica symmetry when
the dimension d of space is small [6–11]. Recent calcu-
lations using the strong-disorder renormalization group
were interpreted as suggesting that the spin glass (SG)
phase is replica symmetric for d ≤ 6 [7,8]. Much of the
debate on the existence or not of RSB has focused on the de
Almeida–Thouless (AT) line [12]. According to the RSB
theory, there is a phase transition in an applied magnetic
field h, occurring along the AT line TcðhÞ as the temper-
ature T is reduced. Below TcðhÞ, there is the SG phase with
RSB, whereas for T ≥ TcðhÞ, replica symmetry is unbro-
ken. The existence of the AT line in high dimensions d ≥ 6
is supported by, for example, Ref. [13]. The existence of
such a line in three dimensions has been the subject of
experimental work [14] and controversial simulational
studies [15–18].
In early work, Bray and Roberts (BR) [19] derived a

“reduced” field theory of Landau-Ginzburg-Wilson type
for a set of fluctuating fields that remain critical on the AT
line. Applying standard perturbative RG methods at one-
loop (i.e., lowest nontrivial) order, they showed that, when
d is less than or equal to 6, the coupling constants run away
to infinity, so no stable physical RG fixed point exists, and
hence corrections to the mean-field exponents could not be
calculated even at leading order in 6 − d. (This is in contrast
with the transition at h ¼ 0, for which such an expansion

exists in the conventional way [20], using the unreduced
theory.) BR suggested that, for d < 6, the transition on the
AT line could become first order or the line itself could
disappear. When d > 6, the BR RG flows have a domain of
attraction of the zero coupling fixed point [21], so that
sufficiently small initial values of the couplings run toward
zero, implying mean-field values for critical exponents,
while initial values outside this domain run off to infinity;
this domain shrinks to zero size as d → 6þ. It is also known
that the form of the AT line at small h is modified from the
mean-field result for dimensions 6 < d < 8 [22,23].
In this Letter, we approach the problem from the point of

view of dimensions d larger than 6. We calculate the
crossover from the unreduced to the reduced theory using
perturbative RGmethods at one-loop order. We find that for
sufficiently small h, the initial values of the couplings in the
BR theory lie inside the domain of attraction of zero
coupling, but as h increases, they pass through the boundary
of the domain and so run off to infinity. Hence, there is a
transition associatedwith anRG fixed point on the boundary
of the domain of attraction. This implies that there is a
multicritical point (MCP)M at ðT; hÞ ¼ ðTM; hMÞ on theAT
line for d > 6, at least for d notmuch larger than 6. For small
fields, the critical behavior is that ofmean-field theory, while
for larger fields it is some other unknown behavior (possibly
first order); see Fig. 1. The distance in temperature of the
MCP from the h ¼ 0 critical point varies as c1=ε → 0 as
ε ¼ d − 6 → 0þ, where c is some constant (0 < c < 1). We
calculate the exponents at the MCP at first order in ε.
As a consequence, non-mean-field behavior of the

critical properties occurs on a portion of the AT line
already for d > 6. Its existence suggests the possibility
of similar behavior for d ≤ 6 as well, in this case for all
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h ≠ 0. However, the possibility that the entire (non-mean-
field-like) AT line disappears at once for d ≤ 6 cannot be
excluded using the present methods. Clearly, it is imper-
ative to understand the nature of the non-mean-field part of
the AT line. The AT line is expected to intersect the T ¼ 0
axis at h ¼ hc when d is finite. As d → ∞ at fixed T and h,
one expects that mean-field theory becomes exact for the
phase boundary and exponents, and hence, that both hc and
hM should tend to infinity as d increases; M will reach
T ¼ 0 either at some finite d ¼ du > 6, so there is no non-
mean-field portion for d > du, or at du ¼ ∞.
We start from the Edwards-Anderson (EA) model [24]

defined on ad-dimensional hypercubic lattice of linear extent
L by the Hamiltonian

H ¼ −
X
hiji

JijSiSj − h
X
i

Si; ð1Þ

where the summation is over distinct nearest-neighbor pairs
only, the Ising spins take the values Si ∈ f�1g with
i ¼ 1; 2;…; Ld, and the random bonds Jij are independent
Gaussian variables of variance ð2dÞ−1=2 [chosen so that
Tcðh ¼ 0Þ → 1 as d → ∞] and zero mean. From the
partition function associated with Eq. (1), one can derive
[20,25,26] the replicated and bond-averaged Landau-
Ginzburg-Wilson field theory, which involves fluctuating
fields Qαβ ¼ Qβα, where, as usual, the indices α and β run
over values 1; 2;…; n, n is set zero at the end of the calcu-
lation, andQαα ¼ 0 for all α. The action in this theory is [19]

F½fQαβg� ¼
Z

ddx
�
−
1

4
r
X

Q2
αβ þ

1

4

X
ð∇QαβÞ2

−
1

6
w
X

QαβQβγQγα −
1

8
y
X

Q4
αβ

−
1

2
h2

X
Qαβ þ � � �

�
: ð2Þ

Here the summations in each term are over all values of the
free indices in that term and are unrestricted except that
Qαα ¼ 0. Terms omitted are other less-important terms of
order Q4 or higher or with more than two derivatives. The
coefficients w and y are positive, while we have reversed
the usual sign of r, so that r ∝ Tcðh ¼ 0Þ − T > 0 for
T < Tcðh ¼ 0Þ. This theory, to which we refer as the
unreduced theory, is usually believed to capture the essence
of SG behavior near criticality in d dimensions.
The unreduced theory contains 1

2
nðn − 1Þ modes when

expanded to quadratic order, which can be classified [12]
into symmetry types, conventionally called longitudinal
(one mode), anomalous (n − 1 modes), and replicon
[1
2
nðn − 3Þ modes]. By a standard RG method, in which

a cutoff of 1 is assumed, and Fourier components of fields
with wave vectors in a shell just below the cutoff are
successively integrated out, followed by rescaling to restore
the cutoff to 1, one obtains the one-loop RG flow equations
[20,23,27] for the effective couplings wðlÞ, rðlÞ, hðlÞ2, and
yðlÞ at length scale el (where scale l ¼ 0 corresponds to the
initial cutoff scale),

dw
dl

¼ 1

2
½−ε − 3η�w − 2w3; ð3Þ

dr
dl

¼½2 − η − 4w2�r; ð4Þ

dh2

dl
¼ 1

2
½dþ 2 − η�h2; ð5Þ

dy
dl

¼½4 − d − 2η − Bw2�yþ Aw4; ð6Þ

where ε ¼ d − 6, η ¼ − 2
3
w2, and A > 0 and B are con-

stants, the values of which are not important. We adopted
the convention of absorbing the geometric factor Kd ¼
2=½Γðd=2Þð4πÞd=2� into w2. Mass corrections in denomi-
nators in these equations [27] have been dropped, except in
the RG equation for r, where the first order term has been
retained. (That equation should also include an inhomo-
geneous term that describes a shift in the critical temper-
ature; however, that effect is also negligible in the limit we
consider.)
The flow equations can be solved exactly. First, one

has [21]

wðlÞ ¼ w0e−
1
2
εlh

1þ 2w2
0

ε ð1 − e−εlÞ
i
1=2 ; ð7Þ

where w0 ¼ wð0Þ, which typically is of order 1. We will see
that the matching to the BR reduced action that we require
occurs at w ∝

ffiffiffi
ε

p
as ε → 0þ (i.e., d → 6þ), so that the limit

of interest in the following is always ε → 0with εl (and w0)
fixed. In this limit,

Paramagnet

Spin Glass M

C
T

h

FIG. 1. A schematic phase diagram, for dimension d slightly
larger than six, showing the MCP M on the AT line, at which the
nature of the criticality changes. The portion of theAT line at low h
(red) is where the exponents at the line are mean-field-like; the
portion of the line at high h (blue) is where the RG flows run away
to infinity. The dashed line (green) indicates schematically the
direction along which the distinct correlation length exponent of
the multicritical fixed point might be observable. M approaches
the zero-field critical point C as d tends to six from above.
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wðlÞ ¼
�
ε

2

�
1=2 e−

1
2
εl

ð1 − e−εlÞ1=2 ½1þOðεÞ�: ð8Þ

[Recall that f ¼ OðgÞ as ε → 0 means that jfðεÞ=gðεÞj
is bounded above for all ε sufficiently close to 0.]
Similarly [21],

rðlÞ ¼ rð0Þ exp
�
2l −

10

3
ΔðlÞ

�
; ð9Þ

hðlÞ2 ¼ hð0Þ2 exp
�
1

2
ðdþ 2Þlþ 1

3
ΔðlÞ

�
; ð10Þ

where

ΔðlÞ ¼
Z

l

0

wðl0Þ2dl0 ð11Þ

¼ 1

2
ln

�
1þ 2w2

0

ε
ð1 − e−εlÞ

�
ð12Þ

¼ 1

2
ln

�
2w2

0

ε
ð1 − e−εlÞ

�
þOðεÞ ð13Þ

in the required limit. For y, we obtain likewise

yðlÞ ¼ yð0Þ exp
�
ð4 − dÞlþ

�
4

3
− B

�
ΔðlÞ

�

þ Aeð4−dÞlþð4
3
−BÞΔðlÞ

Z
l

0

wðl0Þ4e−ð4−dÞl0−ð43−BÞΔðl0Þdl0:

ð14Þ
In this case, the required limit can be obtained by defining
the integration variable l00 ¼ εl0, in terms of which the
integration limit becomes a constant and Laplace’s method
can be applied to the integral, to obtain

yðlÞ ¼ A
ε2e−2εl

8ð1 − e−εlÞ2 ½1þOðεÞ�; ð15Þ

as ε → 0 with εl > 0 fixed; the initial value yð0Þ is an
exponentially small correction and has been dropped. Thus,
y ¼ 1

2
Aw4 [23].

The crossover to the BR reduced action takes place at the
scale l ¼ l�, at which the longitudinal and anomalous
modes have mass-squared 1, while by definition of the
AT line, the replicons remain massless there. The action (2)
predicts at mean-field level that, for nonzero h2, the AT line
in the r–h plane and the replica symmetric expectationQ of
Qαβ on the line are given by

Q ¼ r
2w

> 0; h2 ¼ 2yQ3 ¼ yr3

4w3
: ð16Þ

These expressions [19] are valid up to corrections of
relative size yr=w2. Further, the longitudinal and

anomalous modes can be shown [12] to have mass-squared
r on the AT line. Setting rðl�Þ ¼ 1, the corrections to the
leading expressions for Q and h2 on the AT line are of
relative order yðl�Þrðl�Þ=wðl�Þ2 ¼ 1

2
Awðl�Þ2 ¼ OðεÞ as

ε → 0 with εl� fixed.
The BR reduced action results from (2) by setting the

fluctuations of the nonrepliconmodes to zero; the fields Q̃αβ

in the replicon sector are defined by the condition
P

βQ̃αβ ¼
0 for all α, in addition to Q̃αα ¼ 0. The reduced action is [19]

F½fQ̃αβg�¼
Z

ddx

�
1

4
r̃
X

Q̃2
αβþ

1

4

X
ð∇Q̃αβÞ2

−
1

6
w1

X
Q̃αβQ̃βγQ̃γα−

1

6
w2

X
Q̃3

αβ

�
; ð17Þ

up to terms higher order in Q̃ or derivatives. Here again the
summations are unrestricted, but the fields obey the con-
ditions noted above. r̃ ¼ −rþ 2wQ [19] vanishes on the
AT line. In principle, the nonreplicon modes should be
integrated out exactly once they becomemassive [rðlÞ ≥ 1],
not just projected to zero, but this should produce, at most,
only negligible [OðεÞ] corrections to coefficients, because
(as we will see) the couplings are of order ε1=2.
The remaining coupling constants in the BR reduced

action are

w1 ¼ w − 3uQ; ð18Þ
w2 ¼ 3yQ: ð19Þ

Here u is another quartic coupling in the unreduced action,
for which the flow is the same as for y except that A and B
are replaced by some A0 and B0. By the above, when the
crossover to the BR reduced action occurs, these are

w1 ¼ w; ð20Þ
w2 ¼ 0; ð21Þ

plus terms of order OðεwÞ in the required limit.
When w2 ¼ 0, the critical w1 on the boundary of the

domain of attraction of the origin in the BRRG flows (which
we review below) is w1 ¼ ðc0εÞ1=2, where c0 ¼ 1=24.
Setting wðl�MÞ ¼ ðc0εÞ1=2 gives, for l� ¼ l�M at M,

e−εl
�
M

1 − e−εl
�
M
¼ 2c0; ð22Þ

that is,

e−εl
�
M ¼ 2c0

1þ 2c0
< 1: ð23Þ

Thus, εl�M > 0 is a constant and l�M is large as ε → 0,
regardless of the precise value of c0 (note that c0 > 0).
Using the expressions for rðl�Þ ¼ 1 and hðl�Þ2, we find

the location of the MCP M in terms of the bare (i.e., lattice
scale, l ¼ 0) parameters in the unreduced action
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rð0ÞM ¼ ε−5=3ðe−εl�MÞ2=ε½2w2
0ð1 − e−εl

�
MÞ�5=3; ð24Þ

hð0Þ2M ¼ Aε4e−εl
�
Mrð0Þ2Mw0

8½2w2
0ð1 − e−εl

�
MÞ�4 ; ð25Þ

in the limit as ε → 0, where εl�M is constant. These are
among the main results of this Letter; they show that the
MCP M approaches the critical point C exponentially fast
as ε → 0. The exponent in ε−5=3 in the first formula should
be universal. In the second formula, the fact that hð0Þ ∝
rð0Þ as d → 6 (neglecting the prefactor) agrees with
Refs. [22,23] (it was derived in a similar way in
Ref. [23]), while the ε4 in the coefficient agrees with the
results of Ref. [21]; note, however, that the results of these
references were valid in the different limit rð0Þ → 0 at fixed
ε, followed by the ε → 0 limit [28].
Next, we turn to calculations that make greater use of the

BR reduced theory. BR obtained the one-loop RG equa-
tions [19,27]

dw1

dl
¼ 1

2
½−ε − 3η̃�w1 þ 14w3

1 − 36w2
1w2

þ 18w1w2
2 þ w3

2; ð26Þ
dw2

dl
¼ 1

2
½−ε − 3η̃�w2 þ 24w2

1w2

− 60w1w2
2 þ 34w3

2; ð27Þ
dr̃
dl

¼½2 − η̃�r̃ − 3η̃

ð1þ r̃Þ2 ; ð28Þ

where now η̃ ¼ ð4w2
1 − 16w1w2 þ 11w2

2Þ=3.
Equations (26) and (27) were solved numerically for

d > 6 in Ref. [21]. In the w1–w2 plane, the Gaussian fixed
pointG atw1 ¼ w2 ¼ 0 is stable for d > 6.G is the attractor
for flows inside the domain of attraction, as shown in Fig. 2.
The boundary of the domain is itself a flow line of the RG: a
separatrix. There are two pairs of other fixed points on the
separatrix [19]: the fixed pointsU and−U atw1¼� ffiffiffiffiffiffiffiffiffiffi

ε=24
p

,

w2 ¼ 0, which are unstable, and the fixed pointsZ and−Z at
ðw1; w2Þ ¼ � ffiffiffi

ε
p ð0.009 837 02; 0.141 449Þ, which have one

stable (incoming) direction along the separatrix and one
unstable direction (marked in orange in Fig. 3). Outside the
separatrix, all flows go to infinity.
The exponents for the MCP can be obtained by standard

methods from the RG equations linearized at a fixed point.
Although we found above that the initial values for the BR
flows cross the separatrix at a point approaching w2 ¼ 0 as
ε → 0, the generic case for ε > 0 does not pass through that
point, and consequently, the fixed point that controls
the true asymptotics of the MCP is Z (see Fig. 3). First,
the exponent η that describes the power law decay of the
replicon correlation function on the AT line,

ðhSiSji − hSiihSjiÞ2 ∼
1

rd−2þη
ij

ð29Þ

(where the overline represents the average over the Jij), can
be found by evaluating η̃ at Z, giving η ¼ 0.066 07ε at M.
Next, the BR RG equations for w1 and w2, when linearized
about Z, produce the eigenvalues ε for the unstable
direction, and −0.256 24 � � � ε for the stable direction along
the separatrix. The first of these describes the crossover as
the system is perturbed off the MCP but staying on the AT
line, flowing to G if h2 is decreased. (The second gives
corrections to scaling.) Finally, by linearizing Eq. (28)
about the fixed point value of r̃, one can calculate the
exponent ν for the correlation length as the AT line is
approached; it is given by 1=ν ¼ 2þ 5η̃, so at Z (i.e., M),
ν ¼ 1=2 − 0.082 585ε. Hyperscaling relations among
exponents are satisfied at M, even though d > 6. The
mean-field portion of the AT line at low h is governed
instead by G, with η ¼ 0 and ν ¼ 1=2; hyperscaling is
violated for d > 6.
We emphasize that our results are well controlled within

perturbation theory, similar to the usual ε expansion. They
predict a breakdown of perturbation theory on the AT line
above a critical h when d > 6. Hence, the only way they
could fail to be correct, or the MCP not exist, would be if
perturbation theory broke down at all h > 0 when d is just

FIG. 2. The domain of attraction of the Gaussian fixed point
w1 ¼ w2 ¼ 0 of the BR RG flow equations for d > 6 is bounded
by the separatrix shown (blue curve). Distances are measured in
units of

ffiffiffi
ϵ

p
. Only the region w2 > 0 is displayed; the other part is

obtained by inversion symmetry. RG fixed points are shown as
dots (red). The straight line (green) indicates the initial values.

FIG. 3. An enlarged version of Fig. 2 in the vicinity of the
origin. The orange line connects the fixed point Z to the Gaussian
fixed point G at the origin. The green curve is a trajectory for an
initial point just off the separatrix.
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larger than 6; it is unclear how that would occur. Similar
methods show that the one-dimensional power law model
[29] possesses a MCP in the region corresponding to d > 6.
It is not clear what happens to the MCP as d increases

further. The transition point h ¼ hc at T ¼ 0 is expected to
go to infinity as d → ∞. In finite dimensions, the Bethe-
Peierls approximation, that is, the solution of the SG on the
Bethe lattice [30,31], predicts a transition at TcðhÞ → 0 at
nonzero h ¼ hc < ∞, and h2c ∼ ln d → ∞ as d → ∞ [32].
(For Gaussian random fields with variance h2 and mean
zero, hc ∼

ffiffiffiffiffiffi
2d

p
instead.) This limit thus agrees with the

solution of the Sherrington-Kirkpatrick model [12]. On the
Bethe lattice, the T ¼ 0 transition is percolative in nature
[33], but it is not clear if that is true for the EA model at
high d. No MCP has been found in these other models, so
we expect TM → 0 as d → ∞. Hence, we define a
dimension du > 6 at which the MCP hits the T ¼ 0 h
axis; it is possible that du ¼ ∞.
Recent work has suggested alternative pictures.

Reference [9] finds a non-mean-field transition governed
by a zero-temperature fixed point at nonzero h for suffi-
ciently high dimensions and no MCP (see also Ref. [34]).
However, the exponents for that transition given there for
hierarchical-lattice models imply that the SG susceptibility
exponent γ is negative, which means the SG susceptibility
does not diverge at the AT line, at variance with the
conventional view of the line. In those models, any finite
region is contained in a region with only two spins on the
boundary, so there can be at most four ground states. This
and a similar limitation on the number of pure states at
T > 0 preclude most forms of RSB a priori (see also
Ref. [35]). In other work, Ref. [36] has extended the BR
calculation to three-loop order and suggested that a fixed
point might be present at strong coupling in 5 dimensions
and below, even if not right up to 6 dimensions. Their
argument is of unknown validity.
In conclusion, we have shown that there is a non-

perturbative (non-mean-field) portion of the AT line in a
spin glass in dimensions greater than 6, separated from the
mean-field region at a low magnetic field by a multicritical
point. This suggests, though it does not prove, that a similar
nonperturbative AT line could also persist below 6
dimensions.
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