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We theoretically study the dynamics of a transverse-field Ising chain with power-law decaying
interactions characterized by an exponent @, which can be experimentally realized in ion traps. We focus on
two classes of emergent dynamical critical phenomena following a quantum quench from a ferromagnetic
initial state: The first one manifests in the time-averaged order parameter, which vanishes at a critical
transverse field. We argue that such a transition occurs only for long-range interactions a < 2. The second
class corresponds to the emergence of time-periodic singularities in the return probability to the ground-
state manifold which is obtained for all values of a and agrees with the order parameter transition for
a < 2. We characterize how the two classes of nonequilibrium criticality correspond to each other and give
a physical interpretation based on the symmetry of the time-evolved quantum states.
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Recent experiments with cold atoms [1-9] and trapped
ions [10-13] have realized nonequilibrium quantum states
with exotic properties that cannot be captured by a
thermodynamic equilibrium description. This includes
the observation of prethermalization [1-3,11] and many-
body localization [5-10]. Despite these remarkable
discoveries, it is still a major challenge to reveal universal
properties of nonequilibrium quantum states. One possible
approach for developing a general understanding of
far-from-equilibrium dynamics is to explore concepts of
nonequilibrium critical phenomena. However, due to the
lack of clear generic principles, different concepts of
dynamical criticality have been introduced [14-22].

In this work, we show that two seemingly unrelated
nonequilibrium critical phenomena are actually intimately
connected. In particular, the first class of nonequilibrium
criticality describes dynamical quantum phase transitions
(DQPTs) in the asymptotic late-time steady state of an
order parameter (DQPT-OP) that is finite in one dynamical
phase but vanishes in the other [14,19]. The second class is
DQPTs associated with singular behavior in the transient
real-time evolution of Loschmidt echoes (DQPT-LO)
[22,23]. By studying the quantum dynamics of an initially
fully polarized state in a transverse-field Ising chain with
power-law decaying interactions, we show that these two
types of DQPTs are related in several ways: First, they
predict consistent values for the dynamical critical point;
see Fig. 1. Second, the singularities in the Loschmidt echo
are related to O0’s in the time evolution of the order
parameter. Third, we argue that the dynamics restores
the symmetry breaking imprinted by the initial polarized
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state only when crossing the DQPT-LO but ceases to do so
for quenches within the same dynamical phase.

Model and protocol.—Long-range systems exhibit many
interesting properties that have been extensively studied in
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FIG. 1. wDynamical phase diagram. We study the quantum

dynamics of an Ising chain with power-law decaying interactions
by preparing the system in a fully polarized state and abruptly
switching on a finite transverse field /;. We identify the DQPT
through two mechanisms: One introduces an order parameter
(DQPT-OP) that is finite only in the dynamical ferromagnetic
phase, whereas the other is based on nonanalytic kinks in the
Loschmidt rate function (DQPT-LO) that only arise for quenches
across the transition. When the interaction exponent a < 2, the
DQPT occurs simultaneously for both cases along the red line,
separating the dynamical ferromagnetic (I) and the dynamical
paramagnetic (IIT) phase. We argue that for a > 2 the system does
not establish a finite order parameter and thus the DQPT-OP ends
ata = 2. Yet, the DQPT-LO persists for arbitrarily large a (dashed
line) separating two dynamical phases characterized by a mono-
tonic decay (II) and an oscillating decay (III) of the magnetization.
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the past [24-31]. Experimentally, the real-time dynamics of
long-range interacting spin chains in a transverse field can
be explored with trapped ions [10,12,32-35] where power-
law decaying interactions between the effective spins with
exponents 0 < @ < 3 are mediated by collective vibrations
of the underlying ionic crystal [36]. The corresponding
Hamiltonian is

H(h) ==Y V(i-jlojei—=hY o5, (1)
i#j=1 j=1

with the transverse field 4 and the interaction potential
V(x) = Ju(x)/N(a). Here, v(x)= |x|~® describes the
power-law decaying interactions and J sets the interaction
strength. We added a normalization constant N(a) =
[1/(N = 1)] 320, v(i — j) that ensures the intensive scal-
ing of the energy density for any a. For all values of a, this
model is known to display an equilibrium quantum phase
transition from a ferromagnet to a paramagnet. At finite
temperatures, the equilibrium ferromagnetic phase is in one
dimension only stable for a <2 [37,38].

We are studying the quantum dynamics following a
global quantum quench in the transverse field 4. To this
end, we initially prepare the system in the fully polarized
state |[+) =| — ... =) and then monitor the ensuing
real-time dynamics governed by the Hamiltonian A (h 7).

Time evolution of the order parameter.—The first class
of dynamical criticality, DQPT-OP, occurs in the long-time
asymptotics of a dynamical order parameter, which is finite
for quenches within the ordered phase h; < h, and 0 for
quenches across the dynamical transition iy > h,. For our
model the order parameter is the time-averaged longi-
tudinal magnetization

o — lim % A " dio* (1), 2)

with o/ (1) = (S’(1)) (B=x, y, z) and S/ = 1/NY ;6"
denoting the collective spin operators.

DQPT-OPs have been studied extensively in various
integrable quantum many-body systems displaying non-
thermal long-time dynamics, such as BCS models [14],
models with infinite-range interactions [19,39—44], and
field theories in high dimensions [44,45]. An analytically
tractable regime of our model is the infinite-range limit,
a = 0. There, the dynamics of the order parameter corre-
sponds to the precession of a single collective spin S7,
implying that ¢*(¢) oscillates persistently in time with a
single frequency around a mean value set by ¢*. Initializing
the system in the ferromagnetic ground state, #; < h,, a
DQPT-OP can occur, characterized by an order parameter
¢ that remains finite for 2, < h, but is O for h; > h,. For
a = 0, the critical value of the field 4 can be computed
analytically, h. = J + h;/2 [43,46].

For a >0 the dynamics is not exactly solvable.
Therefore, we compute the time evolution numerically
using a recently developed algorithm based on a time-
dependent variational principle applied to matrix product
states [47,48]. All presented data are evaluated for bond
dimension 100 and time step 0.02/J. We demonstrate the
convergence of our data with the bond dimension in
Supplemental Material [49].

For sufficiently small exponent a, we find that the order
parameter ¢*(¢) remains finite within the dynamical ferro-
magnetic phase hy < h., whereas it approaches 0 with
damped oscillations within the dynamical paramagnetic
phase h; > h; see Fig. 2(a) for a = 1.5. In this regime,
we find that the order parameter increases with system size
for hy < h. supporting its robustness in the thermodynamic
limit. When increasing « further o* () relaxes to 0 regardless
of the final transverse field & ; see Fig. 2(b) for a = 3. In that
regime the order parameter decays with increasing system
size, indicating its approach to 0 in the thermodynamic limit.

Dynamical transition in the order parameter.—In the
following we focus on the order parameter ¢* obtained
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FIG. 2. Time evolving the order parameter. (a) For a = 1.5 and
hy = 0.7J the order parameter ¢*(¢) approaches a finite value,
describing a dynamical symmetry-broken state with ferromag-
netic order, whereas it decays to 0 with strong oscillations for
quenches to hy = 1.5J. (b) Even though for shorter-ranged
interactions a@ = 3 the order parameter reaches O for all values
of hy, the nature of the decay is very different: For small fields
hy =0.7J it decays with a timescale much longer than the
microscopic scales, whereas for large fields i, = 1.5/ it oscil-
lates around O and decays rapidly.
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from our numerical data by integrating ¢*(#) over a time
window of 5/J around half of the first finite-size recurrence
time, which scales approximately linearly with system size
[49]. The order parameter ¢* displays the same qualitative
crossover in finite-size systems: a monotonic decrease of o™
from 1 to O as the final transverse field /4 is increased; see
Fig. 3. Analyzing the finite-size flow we, however, observe
a markedly different behavior when tuning the value of a.
At small @ and moderate fields i, < J, Figs. 3(a) and 3(b),
our numerics indicate that ¢* increases with system size N
and the finite-size flow suggests a critical point close to
h. = J in the thermodynamic limit. By contrast, for large a,
Fig. 3(c), the order parameter o rapidly vanishes with
increasing system size, suggesting the absence of a tran-
sition. A finite-size scaling analysis of the dynamical
transition would require a two-parameter scaling, which
depends both on the system size and on time. In addition
the dynamical critical point is not known for our system.
Because of our limited amount of data, such an analysis is
therefore not feasible. However, it would be a direction for
future research.

One might expect that our model is not integrable and
hence thermalizes for any a € (0, 00), which would turn the
DQPT-OP into a conventional thermal transition. We argue
that this is not the case. To this end, we first consider the
integrable point @ = 0. In that limit, we find that the
thermal transition occurs at A" = /2J, which is signifi-
cantly larger than the critical field of the dynamical
transition h, = J [49]. For small @ = 0.1 our numerical
data suggest that the DQPT is also located at /. = J; see
Fig. 3(a). Assuming now that the critical field of the thermal
transition changes only perturbatively for weak a, our
numerical evidence for k.= J is inconsistent with the
transition being thermal also for a = 0.1. Determining
the value of a at which the system starts to thermalize
remains a challenging open question.

—_

[

In the limit of the nearest-neighbor Ising model, a = oo,
it is well established that ¢ =0 for all hy >0 [50].
Constructing perturbatively a generalized Gibbs ensemble
around this point [51] suggests the absence of a steady-state
transition also in the vicinity of & = co [49]. Our numerics
provides strong evidence that the dynamical phase tran-
sition is absent for all @ > 2. We estimate @ = 2 as an upper
bound for the DQPT-OP, in analogy to the equilibrium
finite-temperature transition that can only occur for a < 2.
However, we also find a crossover region 2 <a <24
where the finite-size flow of our simulations is not fully
indicative [49].

In a recent work, a different interpretation has been
proposed for a > 2: Based on extrapolating transient
dynamics (¢#J < 10) of the order parameter to infinite times,
a prethermal ordered phase has been conjectured to exist for
all values of a [52]. This approach is, however, inconsistent
with the arguments for the absence of a DPQT-OP near
a = oo and might be explained by the fact that the error of
the extrapolation procedure cannot be estimated in an
unbiased way, unless the functional form of the decay
(or at least the timescales involved) is known.

Dynamical transition in the Loschmidt echo.—The
second class of dynamical transitions we consider is
DQPT-LOs, which arise as singularities in Loschmidt
amplitudes G(t) = (¥|exp[—iH(h/)?]|¥) as a function of
time [22], where |¥) denotes the initial state. Formally,
Loschmidt amplitudes at imaginary times resemble equi-
librium boundary partition functions [22,53,54]. Therefore,
it is suitable to introduce a dynamical counterpart of the
free energy density, which is the Loschmidt rate function
(or large deviation function [54]) g(¢) = —N~"log[G(1)].
Similarly to equilibrium free energies being nonanalytic at
conventional phase transitions, the Loschmidt rate function
g(t) can display nonanalyticities, which define the DQPT-
LO. Such DQPT-LOs have been studied in different models
[22,23,55-70] and measured in recent experiments [67,71].
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FIG. 3. Dynamical phase diagram of the order parameter. We estimate the asymptotic value of the order parameter ¢* as a function of

the quenched transverse field /1 for different system sizes N and interaction exponents (a) a = 0.1, (b) @ = 1.5, and (¢) @ = 3. For both
values of @ < 2 we find that the finite-size flow of the order parameter indicates a DQPT-OP with the critical point 4. ~ J. For very long-
ranged interactions, (a), the order parameter 6* approaches the mean-field predictions, & = 0 (dashed lines), with increasing system size.
By contrast, for relatively short-ranged interactions (c) a = 3, the finite-size flow suggests that the order parameter ¢* flows toward 0 in
the thermodynamic limit for all values of the transverse field.
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The Loschmidt amplitude is not uniquely defined when
the ground-state manifold of the initial Hamiltonian is
degenerate. In order to maintain the connection of DQPT-
LOs to macroscopic observables and therefore potentially
to DQPT-OPs, the proper generalization is the probability
to stay in the ground-state manifold [23],

P(1) = Y (¥, (i) e 001, () 2, (3)

which reduces to the Loschmidt echo £(t) = |G(¢)|? in the
limit of a single ground state. Here, {|¥,(h;))} denotes the
degenerate states at h; and |Wy(h;)) is the chosen initial
condition. In our case we have that [¥y(h;)) = |+) and
|¥(h;)) =|-) =| < ... «<). Consequently, we obtain
P(t) = P,(1)+P_(1) with P.(t)=|(+]+ (D)} and
P_(t) = |(=] + (1))]>. After our work appeared, the
Loschmidt echo L(r) itself was also computed for the
long-range Ising model [72-74].

Merging the different concepts of DQPT.—Let us now
establish the connection between the two concepts of
dynamical criticality. For this purpose we first consider
the limit of @ = 0 where the dynamics is described by
semiclassical Bloch equations for the collective spin
6(t) = {6%(1),0”(t),0%(¢)}. In that case, the individual
probabilities P, (7) = exp[-NA.(t)] with A.(f) =
—log[(1 £ &(7) - 6(0))/2] exhibit a particularly illustrative
form: for the fully polarized state, 6(¢) - 6(0) measures the
projection of 6(¢) onto the x axis [75].

DQPT-LOs can occur in P(t) because the individual
probabilities P (7) = exp[—~NA,(t)] show an exponential
dependence on system size N. Therefore, in the thermo-
dynamic limit only one of the two dominates such that
P(t) = exp[-NA(t)] with A(t) = min,_, 4, () [23]. While
at short times A(7) = 4,.(#) due to the initial condition,
A_(t) can take over at a critical time, which leads to a kink
in A(¢). For the concrete case of @ = 0 this can be traced
back to 6(¢) crossing the equator of the Bloch sphere,
o* = 0, because then 4, = A_. As we have seen in Fig. 2,
this can happen only when the DQPT-OP is crossed, i.e.,
for hy > h.. Therefore, a DQPT-LO occurs only when
crossing the DQPT-OP, which manifests itself in a vanish-
ing long-time magnetization ¢* = 0. In this way the Z,
symmetry, broken explicitly by the initial state, is restored
in the long-time limit as well as at the critical times at which
the DQPT-LO occur.

Although these considerations address a fine-tuned limit
of a = 0, we show in Fig. 4 based on our numerical data
that the relation between DQPT-LO and DQPT-OP is
robust and extends to @ > 0. DQPT-LOs in the form of
kinks occur whenever the system is quenched sufficiently
strongly such that hy > h. whereas for hy < h, the rate
function A(f) stays smooth. In addition we compare the
period of the kinks (z; ) with the period of the 0’s of o™ ()
(top), which are obtained by the distance between
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FIG. 4. Dynamical quantum phase transitions in the Loschmidt
echo. We compute an extension of the Loschmidt echo, which is
the return probability to the degenerate ground-state manifold,
Eq. (3), for different values of the transverse field i, and
interaction exponent (a) @ = 1.8 and (b) @ = 2.5. We observe
nonanalyticities in the associated rate function A(z) for arbitrary
values of the interaction exponent «, provided the final transverse
field Ay is sufficiently large. The insets compare the typical rate of
kinks in A(z), solid line, with the zero crossings of the order
parameter ¢*(¢). The right panels show the evolution of the
magnetization &(¢) projected onto the xy plane of the Bloch
sphere. When quenching across the dynamical transition, the
magnetization spreads over both hemispheres (black curves)
whereas it remains located on one hemisphere for quenches
within the same dynamical phase (blue and red curves), indicating
a bifurcation of the dynamics.

successive kinks in A(z) and successive 0’s in o,(),
respectively. Specifically, we plot in the insets of Fig. 4
the inverse of this timescale and find within the error bars,
which denote the standard error of the mean, good agree-
ment over a wide range of Ky, supporting the close
connection of ¢*(¢) and DQPT-LOs for generic values of
a. The precise location of the 0’s in ¢¥(#) exhibits a small,
essentially constant shift compared to the kinks in A(7)
[22,23]. This is illustrated in the Bloch spheres of Fig. 4,
where the kinks (black dots) appear slightly later in time
than the zero crossings of the order parameter ¢* = 0.
Moreover, we emphasize that the connection between
DQPT-LOs and the 0’s of ¢(¢) is also valid for a > 2
where no DQPT-OP occurs. The field 4. marking the
appearance of DQPT-LOs for hs > h. then separates a
regime of monotonic decay of ¢ for hy < h. from
oscillatory decay for hy > h.; see Fig. 4(b).

Conclusions and outlook.—We have studied dynamical
quantum phase transition in a transverse-field Ising chain
with power-law decaying interactions. We have argued that
two seemingly different concepts of nonequilibrium
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criticality, specifically dynamical transitions in the order
parameter and dynamical transitions in the Loschmidt echo,
are actually intimately related in the following ways. (i) We
find that both of them predict consistent values for the
dynamical critical point for interaction exponent a < 2.
(i1) For generic values of a, the period of kinks in the
Loschmidt rate function agrees with the period of 0’s in the
order parameter. (iii) The order parameter restores sym-
metry imprinted by the initial polarized state, only for
quenches across the dynamical quantum phase transition,
but ceases to do so for quenches within the same dynami-
cal phase.

In future studies, it would be interesting to extract the
dynamical critical exponents of the order parameter.
Furthermore, studying in detail the scaling of order
parameter fluctuations with system size could establish
for which values of the interaction exponent our system is
thermalizing according to the eigenstate thermalization
hypothesis.
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Note added.—During the review process of our work,
recent experiments observed some of our findings on
DQPT in the order parameter [13] and the Loschmidt
echo [71].
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