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The entanglement properties of random quantum states or dynamics are important to the study of a broad
spectrum of disciplines of physics, ranging from quantum information to high energy and many-body
physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure
states and unitary channels. We reveal strong connections between designs (distributions of states or
unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic
functions that depend on certain powers of the density operator), by showing that Rényi entanglement
entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated
Page’s theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize
all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our
results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum
chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
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Introduction.—The interplay between entanglement and
randomness plays important roles in many areas of physics.
A particular notion of wide interest is “scrambling,” which
describes the phenomenon that initially localized quantum
information spreads over the entire system via global
entanglement, so that the information is lost from the
perspective of any local observer, or the state of the system
is effectively randomized. The concept of scrambling
originates from the study of black holes and quantum
gravity [1–4], and similar mechanisms also underlie many
other key concepts in physics, such as quantum chaos [5–
7], quantum thermalization [8,9], and quantum data hiding
[10,11]. The entanglement properties of random or pseu-
dorandom quantum states and channels can illuminate such
phenomena and are fundamental to relevant studies.
It has long been noted that a random state is typically

highly entangled [12,13]. This observation is formalized by
Page’s theorem [1,14–16], which states that the expected
von Neumann entropy of small subsystems of a completely
random state (drawn from the Haar measure) is very close
to the maximum. Similar observations for the entanglement
in random unitary channels have been made recently in [7].
However, such results are not “tight” from the perspective
of complexity. On the one hand, the complexity of Haar
randomness is high: the number of local gates needed
to even approximate the Haar distribution grows

exponentially in the number of qubits [17]. On the other
hand, however, pseudorandom distributions with low
complexity [18–21] are sufficient to acquire the Page-like
entanglement property. That is, there is a significant
complexity gap between complete randomness and large
entanglement entropy. In dynamical scenarios, this gap
corresponds to a substantial but poorly understood regime
beyond scrambling, chaos and thermalization, where the
randomness and complexity of the system can keep
growing. Indeed, the common characteristics of informa-
tion scrambling, such as global entanglement [2,7], remote
signaling [3], and local indistinguishability [22], do not
need nor imply complete randomization, and there is little
knowledge about the physics of later times.
To fill this gap, we consider more stringent entanglement

measures. The study is also extended to unitary channels
via the Choi isomorphism. More specifically, we employ
various techniques from representation theory, random
matrix theory, combinatorics, and Weingarten calculus to
analytically study the generalized entanglement entropies
(which depend on higher powers of the reduced density
operator) of random and pseudorandom states and uni-
taries. A key collective finding is that the Rényi-α entan-
glement entropy averaged over α-designs is almost
maximal, where α-designs stand for evenly distributed
ensembles of states or unitaries that mimic the first α
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moments of the Haar measure, in analogy to α-wise
independent distributions which have wide applications
in classical computer science and combinatorics. In other
words, designs represent finite-degree approximations of
the truly random distribution on states or unitaries, which
are of great interest in quantum information. This result
links the order of entanglement entropies and that of
designs and closes the complexity gap in Page-like theo-
rems. It also suggests Rényi entanglement entropies as
diagnostics of the randomness complexity of corresponding
designs in scrambling, as well as (truly quantum) witnesses
of quantum pseudorandomness. The infinite order limit of
Rényi entropy, which only depends on the largest eigen-
value, is known as the min entropy. We further show that
the min entanglement entropy (and therefore all Rényi
entanglement entropies) becomes almost maximal, which
we also call “max-scrambling,” for designs of an order that
is only logarithmic in the dimension of the system. So
designs of higher orders are essentially completely random
in terms of entanglement. This leads to a strong estimate of
the time needed to achieve max-scrambling based on the
fast scrambling [3] and design [21] conjectures. Finally, we
are able to construct state 2-designs such that all Rényi
entanglement entropies of orders greater than 2 are
bounded away from the maximum, which establishes an
explicit separation between the complexities diagnosed by
Rényi entanglement entropies.
This Letter distills the key quantum information results

of [23], which is written from the perspective of scrambling
complexity. Please refer to [23] for technical details and
more discussions.
Preliminaries.—Here we recall the formal definitions of

designs and generalized entropies, the central mathematical
concepts of this study.
Designs are ensembles of quantum states (unitaries) that

are evenly distributed on the complex unit sphere (unitary
group). They are efficient to implement [18–21] and useful in
many important quantum information processing tasks such
as randomized benchmarking [24,25] and decoupling [26].
There are several ways to characterize exact or approximate
designs (see, e.g., [27]), among which the one based on
polynomials is the most relevant to this work. Let
Homðt;tÞðCdÞ be the space of polynomials homogeneous
of degree tboth in the coordinates of vectors inCd and in their
complex conjugates. An ensemble ν of pure state vectors in
dimension d is a (complex projective) t-design if

EνpðψÞ ¼
Z

dψpðψÞ ∀ p ∈ Homðt;tÞðCdÞ;

whereEν denotes the expectationvalue over ν. The integral is
taken with respect to the (normalized) uniform measure on
the complex unit sphere in Cd. Designs of unitary channels
can be defined analogously. Let Homðt;tÞ½UðdÞ� be the space
of polynomials homogeneous of degree t both in the matrix
elements of U ∈ UðdÞ and in their complex conjugates. An

ensemble μ of unitary operators in dimension d is a “unitary
t-design” if

EμpðUÞ ¼
Z

dUpðUÞ ∀ p ∈ Homðt;tÞ½UðdÞ�;

where the integral is taken over the normalizedHaarmeasure
on UðdÞ.
Order-α entropies of a density operator ρ are entropic

functions (which we call characteristic functions) of trfραg.
A unified definition of such entropies is given by SðαÞs ðρÞ ¼
f1=½sð1 − αÞ�g½ðtrfραgÞs − 1�, where s is a parameter that
identifies the characteristic function and the family of
entropies. The most representative families are Rényi (the
limiting case s → 0) and Tsallis (s ¼ 1) entropies. In this
Letter, we mostly focus on Rényi entropies

SðαÞR ðρÞ ¼ 1

1 − α
log trfραg;

with orders α being positive integers. In contrast to other
generalized entropies, Rényi entropies have the following
desirable properties, which make this family most relevant:
(i) they are convex in trfραg, which makes it possible to use
Jensen’s inequality to lower bound the design-averaged
values by Haar integrals; (ii) they have the same roof value
n for uniform spectrum for systems of n qubits, which allows
meaningful comparisons with the maximum and between
different orders; (iii) they are additive on product states
(otherwise, it is not natural to define generalized quantities
such asmutual information and tripartite information).When

the order α increases, SðαÞR becomes more and more sensitive

to the nonuniformity in the spectrum: Sðα1ÞR ≥ Sðα2ÞR , when
α1 < α2. Taking the α → ∞ limit yields the min entropy

SminðρÞ ¼ − log kρk ¼ − log λmaxðρÞ;
wherek · k denotes the operator norm and λmaxð·Þ denotes the
largest eigenvalue. The min entropy lower bounds all Rényi
entropies.
Random states.—We first introduce results on random

pure states. Consider a bipartite system with Hilbert space
H ¼ HA ⊗ HB, where HA and HB have dimensions dA
and dB, respectively. The entanglement entropy between
partitions A and B of a pure state jψi is given by the entropy
of the reduced density operator ρA ¼ trBðjψihψ jÞ.
A key observation is that, given an α-design να, we have

Eνα trfραAg ¼ R
dψ trfραAg, since trfραAg only involves

Homðα;αÞ terms of the entries of jψi. Since the characteristic
function for the Rényi-α entropy is convex, EναS

ðαÞ
R ðρAÞ is

lower bounded by the characteristic function of the Haar
integral

R
dψ trfραAg by Jensen’s inequality. Calculation

shows thatZ
dψ trfραAg ¼ 1

α!D½α�

X
σ∈Sα

dξðστÞA dξðσÞB ; ð1Þ
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where D½α� ¼ ðdAdBþα−1
α Þ is the dimension of the symmetric

subspace of H⊗α, Sα is the symmetric group of α symbols,
ξðσÞ is the number of disjoint cycles associated with σ [28],
and τ ≔ ð1 2…αÞ is the 1-shift (canonical full cycle). We
noticed that similar results have been derived and rederived
several times [12,29–32]. A simple derivation was pre-
sented in [23].
First, consider equal partitions dA ¼ dB and the limit

of large dimension. Here we introduce the following
cycle lemma (proof in [23], cf. [33]): for all σ ∈ Sα,
ξðστÞ þ ξðσÞ ≤ αþ 1. Then Eq. (1) reduces toZ

dψ trfραAg ¼ Catαd
−αþ1
A þOðd−ðαþ1Þ

A Þ; ð2Þ

where Catα is the αth Catalan number, satisfying
½ðlog CatαÞ=ðα − 1Þ� ≤ 2 for all α ≥ 2. So we obtain the
following Theorem.
Theorem 1.—Let να be a projective α-design. Consider

equal partitions dA ¼ dB. As dA → ∞,

EναS
ðαÞ
R ðρAÞ ≥ log dA −

log Catα
α − 1

þOðd−2A Þ: ð3Þ
So,

EναS
ðαÞ
R ðρAÞ ≥ log dA −Oð1Þ: ð4Þ

That is, the Rényi-α entanglement entropy across any cut
averaged over an α-design is very close to (at most a
constant away from) the maximum.
In fact, we are able to derive explicit bounds for finite

dimensions and nonequal partitions.
Theorem 2.—Let να be a projective α-design. Let

q ≔ α3=ð32d2BÞ < 1, hðqÞ ≔ 1þ 2q=½3ð1 − qÞ�. For any
dA ≤ dB and all α,

EναS
ðαÞ
R ðρAÞ ≥ log dA −

2α − 3
2
log αþ loghðqÞ − 1

2
log π

α − 1

≥ log dA − 2: ð5Þ
We also obtain the following bound, which improves the
above result when dA is small:

EναS
ðαÞ
R ðρAÞ ≥ log dA − 2 log

�
1þ

ffiffiffiffiffiffi
dA
dB

s �
− log c

≥ log dA − 2

ffiffiffiffiffiffi
dA
dB

s
− log c; ð6Þ

where c ¼ 1 if H is real and c ¼ 2 if H is complex.
Error bounds indicating that the above results are highly

robust against small deviations from exact designs can be
found in [23]. These results can be regarded as improved
Page’s theorems that are tight in terms of the complexity.
Now we focus on the min entropy, given by α → ∞.

Large min entropy implies that the spectrum is almost
completely uniform. Are designs of infinite orders needed

to achieve almost maximal min entanglement entropy? The
following result answers the question in the negative.
Theorem 3.—Let να be a projective α-design, where α ¼

⌈ðlog dAÞ=a⌉ ≤ ð16d2BÞ1=3 with 0 < a ≤ 1. Then

EναSminðρAÞ ≥ log dA − 2 − a: ð7Þ
In particular, EναSminðρAÞ ≥ log dA − 3 if α ¼ ⌈ log dA⌉.
That is, Ωðlog dAÞ-designs maximize all Rényi entan-

glement entropies and so are essentially indistinguishable
from the Haar measure by the entanglement spectrum.
Conversely, one may wonder whether there exist α-

designs such that Rényi entanglement entropies of orders
larger than α are bounded away from the maximum, which
we call “gap α-designs.” This indicates that they do not
behave like designs of higher orders in a strong sense. Here
we present an explicit example of gap 2-designs. Let
G ¼ UA ⊗ UB, where UA, UB are the unitary groups on
HA, HB, respectively. Calculation shows that the orbit of
jψi under the action of G forms a 2-design if and only if
trfρ2Ag, with ρA ¼ trBðjψihψ jÞ, is equal to the average over
the uniform ensemble, that is,

trfρ2Ag ¼ dA þ dB
dAdB þ 1

: ð8Þ

The same conclusion still holds if UA, UB are replaced by
subgroups that form unitary 2-designs on HA, HB, respec-
tively. Equation (8) holds if ρA has the following spectrum

λ1 ¼
dAdB þ 1þ ðdA − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdA þ 1ÞðdAdB þ 1Þp

dAðdAdB þ 1Þ ;

λ2 ¼ � � � ¼ λdA ¼ dAdB þ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdA þ 1ÞðdAdB þ 1Þp

dAðdAdB þ 1Þ :

Suppose dB=dA ≤ r, where r is a constant, then
λ1 ≥ ðrdAÞ−1=2, and so

SðαÞR ðρAÞ ≤
1

1 − α
log λα1 ≤

α

2ðα − 1Þ ðlog dA þ log rÞ: ð9Þ

As dA increases, the gap of SðαÞR ðρAÞ from the maximum is
unbounded for all α > 2.
Random unitary channels.—Now we extend the above

analysis of pure states to the intrinsic entanglement proper-
ties of random unitary channels. The key results are similar
in spirit to those for states, although the derivations are
considerably more involved.
The Choi isomorphism (more generally, the channel-

state duality) is widely used in quantum information theory
to study quantum channels as states, by which a unitary
operator U acting on a d-dimensional Hilbert space U ¼P

d−1
i;j¼0Uijjiihjj is dual to the pure state

jUi ¼ 1ffiffiffi
d

p
Xd−1
i;j¼0

Ujijiiin ⊗ jjiout;
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which is called the Choi state of U. Consider bipartitions of
the input register into A and B and the output register into C
and D. Let dA, dB, dC, dD be the dimensions of subregions
A, B, C,D, respectively (dAdB ¼ dCdD ¼ d). We study the
entropy of ρAC with ρAC ¼ trBDðjUihUjÞ. Consider the
negative tripartite information

−I3ðA∶C∶DÞ ≔ IðA∶CDÞ − IðA∶CÞ − IðA∶DÞ;

which is suggested in [7] to diagnose information scram-
bling, since it intuitively measures the delocalization of
local information. Here IðA∶CÞ ¼ SðAÞ þ SðCÞ − SðACÞ
is the mutual information, which measures the total
correlation between A and C. Since the input and output
are maximally mixed due to unitarity, the four subregions
are all maximally mixed. As a result, −I3 is determined by
the entanglement entropy SðACÞ. Indeed, −I3 essentially
measures the ability of a channel to generate global
entanglement that “hides” the delocalized information.
Note that −I3 can be reduced to the conditional mutual
information IðA∶BjCÞ [34], which is of great interest in
quantum information theory.
Let μα be a unitary α-design. By similar arguments

involving the definition of unitary designs and the con-
vexity of the Rényi characteristic function, the problem of

bounding EμαS
ðαÞ
R ðρACÞ boils down to computing the Haar

integral
R
dUtrfραACg. In general, we find thatZ

dUtrfραACg ¼ 1

dα
X
σ;γ∈Sα

dξðστÞA dξðσÞB dξðγτÞC dξðγÞD Wgðd; σγ−1Þ;

ð10Þ

where

Wgðd; σÞ ¼ 1

ðα!Þ2
X
λ⊢α

χλð1Þ2χλðσÞ
sλ;dð1;…; 1Þ

are Weingarten functions of UðdÞ. Here λ⊢α means λ is a
partition of α, χλ is the corresponding character of Sα, and
sλ is the corresponding Schur function (polynomial).
Notice that sλ;dð1;…; 1Þ is simply the dimension of the
irreducible representation of UðdÞ associated with λ. The
Weingarten function can be derived by various tools in
representation theory, such as Schur-Weyl duality [35,36]
and Jucys-Murphy elements [37].
For equal partitions, in the limit of large dimension, we

obtain the following analogous result by applying the
cycle lemma.
Theorem 4.—Let μα be a unitary α-design. Consider

equal partitions of the input and output registers,
dA ¼ dB ¼ dC ¼ dD. As d → ∞,

EμαS
ðαÞ
R ðρACÞ ≥ log d −

log Catα
α − 1

þOðd−1Þ: ð11Þ

So,

EμαS
ðαÞ
R ðρACÞ ≥ log d −Oð1Þ: ð12Þ

Therefore, the Rényi-α entanglement entropy between
AC and BD (and the corresponding negative tripartite
information based on the Rényi-α entropy) averaged over
unitary α-designs is almost maximal.
We also provide more explicit bounds for finite dimen-

sions and nonequal partitions.
Theorem 5.—Let μα be a unitary α-design. Suppose

d >
ffiffiffi
6

p
α7=4 and dA ≤ dB. Then

EμαS
ðαÞ
R ðρACÞ

≥ log d −
log Catα
α − 1

−
log ½aαhðqÞ

8
ð7þ cosh 2αðα−1Þ

d Þ�
α − 1

; ð13Þ

where aα ≔ f1 − ½ð6α7=2Þ=d2�g−1.
Similarly, these results do not deviate much for approxi-

mate unitary designs (see [23] for detailed error analysis).
The result on the min entropy is also similar.
Theorem 6.—Let μα be a unitary α-design, where 1 ≤

α ¼ ⌈ log d=a⌉ ≤
ffiffiffi
d

p
=2 and a > 0; then

EναSminðρACÞ ≥ log d − 2 − a: ð14Þ

In particular, EναSminðρACÞ ≥ logd − 3 if α ≥ ⌈ logd⌉.
Therefore, unitary Ωðlog dÞ-designs maximize all Rényi

entanglement entropies.
Design complexities by Rényi.—In the above, we pre-

sented kinematic results revealing fundamental correspond-
ences between Rényi entanglement entropies and quantum
designs, which imply that states or unitaries sampled from
α-designs typically exhibit nearly maximal Rényi-α entan-
glement entropy. This also suggests Rényi-α entanglement
entropy as potential diagnostics of the randomness com-
plexity of α-designs beyond information scrambling, in
dynamical scenarios. Note that a recent work [38] general-
izes the out-of-time-order correlators (which are widely
used in the study of scrambling; see, e.g., [39–45]) to
higher points and establishes similar connections to unitary
designs via frame potentials.
In particular, the saturation of the min entanglement

entropy indicates that the system looks completely random
(and the local information is completely lost) to any local
observer, which is the strongest form of scrambling that we
call max-scrambling. How fast can physical systems
achieve max-scrambling? The recent design Hamiltonian
conjecture [21] argues, based on the original fast scram-
bling conjecture [3], that there exist physical dynamics
(represented by local [46] and time-independent random
Hamiltonians) that achieve approximate unitary α-designs
in Oðα log nÞ time, where n is the number of qubits. Our
result on logarithmic designs indicates that OðnÞ-designs
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are sufficient for max-scrambling and therefore suggests
the following fast max-scrambling conjecture: max-scram-
bling can be achieved by physical dynamics in
Oðn log nÞ time.
Outlook.—The mathematical results of this Letter con-

cern the average Rényi entanglement entropies of state and
unitary designs. Some technical problems are left open. For
example, we are not yet able to construct gap α-designs for
α > 2 and for unitaries. Moreover, due to the lack of
subadditivity, the negative tripartite information −I3 in
terms of Rényi entropies is not necessarily positive. It is
worth looking into when this situation occurs and further
considering the meanings of such derived quantities. Also,
the results here are about expected values. It would be nice
to further analyze the variances or derive probabilistic
bounds on concentration to talk about “typical” behaviors
in a more rigorous sense.
Our results suggest Rényi entanglement entropies as

powerful tools to further advance the study of quantum
randomness and pseudorandomness. For example, a par-
ticularly interesting insight is that Rényi entropies of
noninteger orders are naturally defined, which indicates
that they can be helpful in understanding the mysterious but
potentially important notion of noninteger designs. The
results may find more applications in relevant areas in
quantum information, such as entanglement theory, quan-
tum complexity theory, quantum computing, and quantum
cryptography.
The physical aspects are certainly worth further explo-

ration. For example, it would be interesting to study the
dynamical behaviors of Rényi entanglement entropies and
randomness in specific many-body or holographic systems
to learn about the physics in the postscrambling regime and
extend existing studies of entanglement growth (e.g.,
“entanglement tsunami” [47,48]). A recent study [49] on
(a 1D variant of) the strongly chaotic Sachdev-Ye-Kitaev
model [50,51] (which has drawn considerable interest as a
solvable toy model of quantum black holes and hologra-
phy) shows that, after a quench, there is a “prethermal”
regime where light modes rapidly scramble, but the Rényi
entanglement entropies do not reach thermal values, which
confirms our expectation that the randomness complexity
of the system is still low; however, the late-time behaviors
remain open. Moreover, it would be nice to extend the
techniques and results of this work to the finite temperature
regime or systems with conserved quantities, so as to apply
our ideas in such physical scenarios and in general the
study of quantum thermalization and many-body localiza-
tion more carefully. We also hope to establish more solid
connections between the randomness complexities and the
conventional ones, such as computational, gate, and
Kolmogorov complexities, which play active roles in recent
studies of holographic duality and black holes [52–54] and
are of independent interest. In general, the study of
randomness complexities may also shed new light on the

fruitful idea of modeling complex systems (especially black
holes [2]) by random states or dynamics. Further research
along these lines are essential to our understanding of
quantum chaos, quantum statistical mechanics, quantum
many-body physics, and quantum gravity.
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